云计算百科
云计算领域专业知识百科平台

开源模型应用落地-DeepSeek-R1-Distill-Qwen-7B-LoRA微调-LLaMA-Factory-单机单卡-V100(一)

一、前言

    如今,大语言模型领域热闹非凡,各种模型不断涌现。DeepSeek-R1-Distill-Qwen-7B 模型凭借其出色的效果和性能,吸引了众多开发者的目光。而 LLaMa-Factory 作为强大的微调工具,能让模型更好地满足个性化需求。

    在本篇中,将深入探讨如何运用 LLaMa-Factory 对 DeepSeek-R1-Distill-Qwen-7B 模型进行微调,探索如何通过微调,让模型更好地为我们所用。


二、术语介绍

2.1. LoRA微调

    LoRA (Low-Rank Adaptation) 用于微调大型语言模型 (LLM)。  是一种有效的自适应策略,它不会引入额外的推理延迟,并在保持模型质量的同时显着减少下游任务的可训练参数数量。

2.2. 参数高效微调(PEFT) 

    仅微调少量 (额外) 模型参数,同时冻结预训练 LLM 的大部分参数,从而大大降低了计算和存储成本。

2.3. LLaMA-Factory

    是一个与 LLaMA(Large Language Model Meta AI)相关的项目,旨在为用户提供一种简化和优化的方式来训练、微调和部署大型语言模型。该工具通常包括一系列功能,如数据处理、模型配置、训练监控等,以帮助研究人员和开发者更高效地使用 LLaMA 模型。

    LLaMA-Factory支持的模型列表:

2.4. DeepSeek-R1-Distill-Qwen-7B

    是一个由DeepSeek开发的模型,它是通过蒸馏技术将Qwen-7B大型模型的一部分知识精华提取出来,以适应更小型的模型需求。


三、前置条件

 3.1. 基础环境及前置条件

     1. 操作系统:centos7

     2. NVIDIA Tesla V100 32GB   CUDA Version: 12.2 

     3. 提前下载好DeepSeek-R1-Distill-Qwen-7B模型         

 通过以下两个地址进行下载,优先推荐魔搭        

huggingface:

https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B/tree/main

ModelScope:

魔搭社区

 按需选择SDK或者Git方式下载

  使用git-lfs方式下载示例:

3.2. Anaconda安装

1、Update System
sudo yum update -y
sudo yum upgrade -y

2、Download Anaconda
wget https://repo.anaconda.com/archive/Anaconda3-2022.10-Linux-x86_64.sh

3、Verify Data Integrity
sha256sum Anaconda3-2022.10-Linux-x86_64.sh

4、Run Anaconda Installation Script
bash Anaconda3-2022.10-Linux-x86_64.sh

安装目录:/opt/anaconda3

注:安装位置可以在执行安装脚本的时候直接指定,可以这样修改执行内容
bash Anaconda3-2022.10-Linux-x86_64.sh -p /opt/anaconda3

Do you wish the installer to initialize Anaconda3 by running conda init?
yes

如果没有执行初始化,可以执行:/opt/anaconda3/bin/conda init

注:初始化时,anaconda将配置写入了~/.bashrc 文件,直接执行
source ~/.bashrc

5、Verify Installation
conda –version

6、配置镜像源
conda config –add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config –add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config –set show_channel_urls yes

3.3.下载LLaMA-Factory

方式一:直接下载

地址:GitHub – hiyouga/LLaMA-Factory: Unified Efficient Fine-Tuning of 100+ LLMs & VLMs (ACL 2024)

方式二:使用git克隆项目

git clone –depth 1 https://github.com/hiyouga/LLaMA-Factory.git

下载好的项目放置在/data/service目录下

3.4. 安装依赖

conda create –name llama_factory python=3.10
conda activate llama_factory
cd /data/service/LLaMA-Factory
pip install -e ".[torch,metrics]" -i https://pypi.tuna.tsinghua.edu.cn/simple

  PS:软硬件要求


四、技术实现

4.1.数据准备

有两种格式选择,包括alpaca和sharegpt

alpaca示例格式:

[
{
"instruction": "人类指令(必填)",
"input": "人类输入(选填)",
"output": "模型回答(必填)",
"system": "系统提示词(选填)",
"history": [
["第一轮指令(选填)", "第一轮回答(选填)"],
["第二轮指令(选填)", "第二轮回答(选填)"]
]
}
]

对于上述格式的数据,dataset_info.json 中的数据集描述应为:

"数据集名称": {
"file_name": "data.json",
"columns": {
"prompt": "instruction",
"query": "input",
"response": "output",
"system": "system",
"history": "history"
}
}

sharegpt示例格式:

  • 相比 alpaca 格式的数据集,sharegpt 格式支持更多的角色种类,例如 human、gpt、observation、function 等等。它们构成一个对象列表呈现在 conversations 列中。
  • 注意其中 human 和 observation 必须出现在奇数位置,gpt 和 function 必须出现在偶数位置。
  • [
    {
    "conversations": [
    {
    "from": "human",
    "value": "人类指令"
    },
    {
    "from": "function_call",
    "value": "工具参数"
    },
    {
    "from": "observation",
    "value": "工具结果"
    },
    {
    "from": "gpt",
    "value": "模型回答"
    }
    ],
    "system": "系统提示词(选填)",
    "tools": "工具描述(选填)"
    }
    ]

    对于上述格式的数据,dataset_info.json 中的数据集描述应为:

    "数据集名称": {
    "file_name": "data.json",
    "formatting": "sharegpt",
    "columns": {
    "messages": "conversations",
    "system": "system",
    "tools": "tools"
    }
    }

    以下采用sharegpt格式,在/data/service/LLaMA-Factory/data/目录上传测试数据,文件名为ds_zh_demo.json,测试数据示例如下:

    [
    {
    "conversations": [
    {
    "from": "user",
    "value": "什么是深度学习,它与传统机器学习有什么区别?"
    },
    {
    "from": "assistant",
    "value": "深度学习是机器学习的一个子领域,使用人工神经网络,尤其是深度神经网络,来进行数据建模。与传统机器学习方法相比,深度学习能够自动提取特征,无需手动特征工程,适合处理大规模数据集和复杂模式。"
    }
    ]
    },
    {
    "conversations": [
    {
    "from": "user",
    "value": "如何评估一个机器学习模型的性能?"
    },
    {
    "from": "assistant",
    "value": "评估机器学习模型的性能通常使用多种指标,包括准确率、精确率、召回率、F1-score、ROC曲线和AUC值。选择合适的指标取决于具体任务的性质和目标。"
    }
    ]
    }
    ]

    修改数据集描述文件dataset_info.json

    vi /data/service/LLaMA-Factory/data/dataset_info.json

    增加以下内容:

    "ds_zh_demo": {
    "file_name": "ds_zh_demo.json",
    "formatting": "sharegpt",
    "columns": {
    "messages": "conversations"
    },
    "tags": {
    "role_tag": "from",
    "content_tag": "value",
    "user_tag": "user",
    "assistant_tag": "assistant"
    }
    }

    4.2.配置文件准备

    1) 备份原有的配置文件

    cp /data/service/LLaMA-Factory/examples/train_lora/llama3_lora_sft.yaml /data/service/LLaMA-Factory/examples/train_lora/llama3_lora_sft.yaml.bak

    2) 创建新的配置文件

    mv /data/service/LLaMA-Factory/examples/train_lora/llama3_lora_sft.yaml /data/service/LLaMA-Factory/examples/train_lora/ds_qwen7b_lora_sft.yaml

    3) 修改配置文件内容

    vi /data/service/LLaMA-Factory/examples/train_lora/ds_qwen7b_lora_sft.yaml

      内容如下:

    ### model
    model_name_or_path: /data/model/DeepSeek-R1-Distill-Qwen-7B
    trust_remote_code: true

    ### method
    stage: sft
    do_train: true
    finetuning_type: lora
    lora_rank: 8
    lora_target: all

    ### dataset
    dataset: ds_zh_demo
    template: deepseek3
    cutoff_len: 4096
    max_samples: 4019
    overwrite_cache: true
    preprocessing_num_workers: 16

    ### output
    output_dir: /data/model/sft/DeepSeek-R1-Distill-Qwen-7B
    logging_steps: 10
    save_steps: 500
    plot_loss: true
    overwrite_output_dir: true

    ### train
    per_device_train_batch_size: 1
    gradient_accumulation_steps: 8
    learning_rate: 1.0e-4
    num_train_epochs: 1.0
    lr_scheduler_type: cosine
    warmup_ratio: 0.1
    bf16: true
    ddp_timeout: 180000000

    ### eval
    val_size: 0.1
    per_device_eval_batch_size: 1
    eval_strategy: steps
    eval_steps: 500

      需要关注以下参数

  • model_name_or_path:模型路径
  • dataset:数据集名称,对应上面声明的qwen_zh_demo
  • template:模版
  • cutoff_len:控制输入序列的最大长度
  • output_dir:微调后权重保存路径
  • gradient_accumulation_steps:梯度累积的步数,GPU资源不足时需要减少该值
  • num_train_epochs:训练的轮数
  • 4.3.启动微调

    conda activate llama_factory
    cd /data/service/LLaMA-Factory
    llamafactory-cli train /data/service/LLaMA-Factory/examples/train_lora/ds_qwen7b_lora_sft.yaml

    # 后台运行
    nohup llamafactory-cli train /data/service/LLaMA-Factory/examples/train_lora/ds_qwen7b_lora_sft.yaml > output.log 2>&1 &

    4.4.微调结果

    [INFO|configuration_utils.py:1052] 2025-02-18 16:39:55,400 >> loading configuration file /data/model/DeepSeek-R1-Distill-Qwen-7B/generation_config.json
    [INFO|configuration_utils.py:1099] 2025-02-18 16:39:55,400 >> Generate config GenerationConfig {
    "bos_token_id": 151646,
    "do_sample": true,
    "eos_token_id": 151643,
    "temperature": 0.6,
    "top_p": 0.95
    }

    [INFO|2025-02-18 16:39:55] llamafactory.model.model_utils.checkpointing:157 >> Gradient checkpointing enabled.
    [INFO|2025-02-18 16:39:55] llamafactory.model.model_utils.attention:157 >> Using torch SDPA for faster training and inference.
    [INFO|2025-02-18 16:39:55] llamafactory.model.adapter:157 >> Upcasting trainable params to float32.
    [INFO|2025-02-18 16:39:55] llamafactory.model.adapter:157 >> Fine-tuning method: LoRA
    [INFO|2025-02-18 16:39:55] llamafactory.model.model_utils.misc:157 >> Found linear modules: down_proj,o_proj,up_proj,k_proj,v_proj,q_proj,gate_proj
    [INFO|2025-02-18 16:39:55] llamafactory.model.loader:157 >> trainable params: 20,185,088 || all params: 7,635,801,600 || trainable%: 0.2643
    Detected kernel version 4.18.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.
    [INFO|trainer.py:667] 2025-02-18 16:39:55,807 >> Using auto half precision backend
    [INFO|trainer.py:2243] 2025-02-18 16:39:56,634 >> ***** Running training *****
    [INFO|trainer.py:2244] 2025-02-18 16:39:56,634 >> Num examples = 3,617
    [INFO|trainer.py:2245] 2025-02-18 16:39:56,634 >> Num Epochs = 1
    [INFO|trainer.py:2246] 2025-02-18 16:39:56,634 >> Instantaneous batch size per device = 1
    [INFO|trainer.py:2249] 2025-02-18 16:39:56,634 >> Total train batch size (w. parallel, distributed & accumulation) = 8
    [INFO|trainer.py:2250] 2025-02-18 16:39:56,634 >> Gradient Accumulation steps = 8
    [INFO|trainer.py:2251] 2025-02-18 16:39:56,634 >> Total optimization steps = 452
    [INFO|trainer.py:2252] 2025-02-18 16:39:56,638 >> Number of trainable parameters = 20,185,088
    0%| | 0/452 [00:00<?, ?it/s]/usr/local/miniconda3/envs/llama_factory/lib/python3.10/site-packages/torch/utils/checkpoint.py:295: FutureWarning: `torch.cpu.amp.autocast(args…)` is deprecated. Please use `torch.amp.autocast('cpu', args…)` instead.
    with torch.enable_grad(), device_autocast_ctx, torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs): # type: ignore[attr-defined]
    100%|██████████| 452/452 [4:06:28<00:00, 31.87s/it][INFO|trainer.py:3705] 2025-02-18 20:46:24,795 >> Saving model checkpoint to /data/model/sft/DeepSeek-R1-Distill-Qwen-7B/checkpoint-452
    [INFO|configuration_utils.py:670] 2025-02-18 20:46:24,819 >> loading configuration file /data/model/DeepSeek-R1-Distill-Qwen-7B/config.json
    [INFO|configuration_utils.py:739] 2025-02-18 20:46:24,820 >> Model config Qwen2Config {
    "architectures": [
    "Qwen2ForCausalLM"
    ],
    "attention_dropout": 0.0,
    "bos_token_id": 151643,
    "eos_token_id": 151643,
    "hidden_act": "silu",
    "hidden_size": 3584,
    "initializer_range": 0.02,
    "intermediate_size": 18944,
    "max_position_embeddings": 131072,
    "max_window_layers": 28,
    "model_type": "qwen2",
    "num_attention_heads": 28,
    "num_hidden_layers": 28,
    "num_key_value_heads": 4,
    "rms_norm_eps": 1e-06,
    "rope_scaling": null,
    "rope_theta": 10000,
    "sliding_window": null,
    "tie_word_embeddings": false,
    "torch_dtype": "bfloat16",
    "transformers_version": "4.45.0",
    "use_cache": true,
    "use_mrope": false,
    "use_sliding_window": false,
    "vocab_size": 152064
    }

    [INFO|tokenization_utils_base.py:2649] 2025-02-18 20:46:25,042 >> tokenizer config file saved in /data/model/sft/DeepSeek-R1-Distill-Qwen-7B/checkpoint-452/tokenizer_config.json
    [INFO|tokenization_utils_base.py:2658] 2025-02-18 20:46:25,043 >> Special tokens file saved in /data/model/sft/DeepSeek-R1-Distill-Qwen-7B/checkpoint-452/special_tokens_map.json
    [INFO|trainer.py:2505] 2025-02-18 20:46:25,377 >>

    Training completed. Do not forget to share your model on huggingface.co/models =)

    100%|██████████| 452/452 [4:06:28<00:00, 32.72s/it]
    [INFO|trainer.py:3705] 2025-02-18 20:46:25,379 >> Saving model checkpoint to /data/model/sft/DeepSeek-R1-Distill-Qwen-7B
    [INFO|configuration_utils.py:670] 2025-02-18 20:46:25,401 >> loading configuration file /data/model/DeepSeek-R1-Distill-Qwen-7B/config.json
    [INFO|configuration_utils.py:739] 2025-02-18 20:46:25,401 >> Model config Qwen2Config {
    "architectures": [
    "Qwen2ForCausalLM"
    ],
    "attention_dropout": 0.0,
    "bos_token_id": 151643,
    "eos_token_id": 151643,
    "hidden_act": "silu",
    "hidden_size": 3584,
    "initializer_range": 0.02,
    "intermediate_size": 18944,
    "max_position_embeddings": 131072,
    "max_window_layers": 28,
    "model_type": "qwen2",
    "num_attention_heads": 28,
    "num_hidden_layers": 28,
    "num_key_value_heads": 4,
    "rms_norm_eps": 1e-06,
    "rope_scaling": null,
    "rope_theta": 10000,
    "sliding_window": null,
    "tie_word_embeddings": false,
    "torch_dtype": "bfloat16",
    "transformers_version": "4.45.0",
    "use_cache": true,
    "use_mrope": false,
    "use_sliding_window": false,
    "vocab_size": 152064
    }

    [INFO|tokenization_utils_base.py:2649] 2025-02-18 20:46:25,556 >> tokenizer config file saved in /data/model/sft/DeepSeek-R1-Distill-Qwen-7B/tokenizer_config.json
    [INFO|tokenization_utils_base.py:2658] 2025-02-18 20:46:25,556 >> Special tokens file saved in /data/model/sft/DeepSeek-R1-Distill-Qwen-7B/special_tokens_map.json
    {'loss': 3.6592, 'grad_norm': 0.38773563504219055, 'learning_rate': 2.173913043478261e-05, 'epoch': 0.02}
    {'loss': 3.667, 'grad_norm': 0.698821485042572, 'learning_rate': 4.347826086956522e-05, 'epoch': 0.04}
    {'loss': 3.4784, 'grad_norm': 0.41371676325798035, 'learning_rate': 6.521739130434783e-05, 'epoch': 0.07}
    {'loss': 3.2962, 'grad_norm': 0.4966348111629486, 'learning_rate': 8.695652173913044e-05, 'epoch': 0.09}
    {'loss': 3.0158, 'grad_norm': 0.333425909280777, 'learning_rate': 9.997605179330019e-05, 'epoch': 0.11}
    {'loss': 3.2221, 'grad_norm': 0.3786776065826416, 'learning_rate': 9.970689785771798e-05, 'epoch': 0.13}
    {'loss': 2.8439, 'grad_norm': 0.3683229386806488, 'learning_rate': 9.914027086842322e-05, 'epoch': 0.15}
    {'loss': 3.0528, 'grad_norm': 0.42745739221572876, 'learning_rate': 9.82795618288397e-05, 'epoch': 0.18}
    {'loss': 2.9092, 'grad_norm': 0.45462721586227417, 'learning_rate': 9.712992168898436e-05, 'epoch': 0.2}
    {'loss': 3.1055, 'grad_norm': 0.5547119379043579, 'learning_rate': 9.56982305193869e-05, 'epoch': 0.22}
    {'loss': 2.9412, 'grad_norm': 0.5830215811729431, 'learning_rate': 9.399305633701373e-05, 'epoch': 0.24}
    {'loss': 2.7873, 'grad_norm': 0.5862609148025513, 'learning_rate': 9.202460382960448e-05, 'epoch': 0.27}
    {'loss': 2.8255, 'grad_norm': 0.5828853845596313, 'learning_rate': 8.980465328528219e-05, 'epoch': 0.29}
    {'loss': 2.6266, 'grad_norm': 0.6733331084251404, 'learning_rate': 8.734649009291585e-05, 'epoch': 0.31}
    {'loss': 2.8745, 'grad_norm': 0.6904928684234619, 'learning_rate': 8.46648252351431e-05, 'epoch': 0.33}
    {'loss': 2.8139, 'grad_norm': 0.7874809503555298, 'learning_rate': 8.177570724986628e-05, 'epoch': 0.35}
    {'loss': 2.7818, 'grad_norm': 0.8345168232917786, 'learning_rate': 7.86964261870916e-05, 'epoch': 0.38}
    {'loss': 2.7198, 'grad_norm': 0.8806198239326477, 'learning_rate': 7.544541013588645e-05, 'epoch': 0.4}
    {'loss': 2.7231, 'grad_norm': 0.9481658935546875, 'learning_rate': 7.204211494069292e-05, 'epoch': 0.42}
    {'loss': 2.7371, 'grad_norm': 0.9718573093414307, 'learning_rate': 6.850690776699573e-05, 'epoch': 0.44}
    {'loss': 2.6862, 'grad_norm': 1.2056019306182861, 'learning_rate': 6.486094521315022e-05, 'epoch': 0.46}
    {'loss': 2.4661, 'grad_norm': 1.200085163116455, 'learning_rate': 6.112604669781572e-05, 'epoch': 0.49}
    {'loss': 2.4841, 'grad_norm': 1.1310691833496094, 'learning_rate': 5.732456388071247e-05, 'epoch': 0.51}
    {'loss': 2.3755, 'grad_norm': 1.1279083490371704, 'learning_rate': 5.3479246898159063e-05, 'epoch': 0.53}
    {'loss': 2.5552, 'grad_norm': 1.2654848098754883, 'learning_rate': 4.96131082139099e-05, 'epoch': 0.55}
    {'loss': 2.6197, 'grad_norm': 1.3887016773223877, 'learning_rate': 4.574928490008264e-05, 'epoch': 0.58}
    {'loss': 2.3773, 'grad_norm': 1.3009178638458252, 'learning_rate': 4.1910900172361764e-05, 'epoch': 0.6}
    {'loss': 2.3881, 'grad_norm': 1.346793532371521, 'learning_rate': 3.812092500812646e-05, 'epoch': 0.62}
    {'loss': 2.4821, 'grad_norm': 1.7273674011230469, 'learning_rate': 3.440204067565511e-05, 'epoch': 0.64}
    {'loss': 2.3563, 'grad_norm': 1.529177188873291, 'learning_rate': 3.077650299710653e-05, 'epoch': 0.66}
    {'loss': 2.1308, 'grad_norm': 1.5957469940185547, 'learning_rate': 2.7266009157601224e-05, 'epoch': 0.69}
    {'loss': 2.1709, 'grad_norm': 1.4444897174835205, 'learning_rate': 2.3891567857490372e-05, 'epoch': 0.71}
    {'loss': 2.275, 'grad_norm': 1.5686719417572021, 'learning_rate': 2.067337358489085e-05, 'epoch': 0.73}
    {'loss': 2.2075, 'grad_norm': 1.5931408405303955, 'learning_rate': 1.7630685760908622e-05, 'epoch': 0.75}
    {'loss': 2.1727, 'grad_norm': 1.7681787014007568, 'learning_rate': 1.4781713480810184e-05, 'epoch': 0.77}
    {'loss': 2.3562, 'grad_norm': 1.742925763130188, 'learning_rate': 1.2143506540914128e-05, 'epoch': 0.8}
    {'loss': 2.1187, 'grad_norm': 1.6716198921203613, 'learning_rate': 9.731853403356705e-06, 'epoch': 0.82}
    {'loss': 2.2564, 'grad_norm': 1.915489912033081, 'learning_rate': 7.561186709365653e-06, 'epoch': 0.84}
    {'loss': 2.261, 'grad_norm': 2.132519245147705, 'learning_rate': 5.644496906502233e-06, 'epoch': 0.86}
    {'loss': 2.1632, 'grad_norm': 1.591231107711792, 'learning_rate': 3.9932545067728366e-06, 'epoch': 0.88}
    {'loss': 2.1266, 'grad_norm': 1.584917664527893, 'learning_rate': 2.6173414408598827e-06, 'epoch': 0.91}
    {'loss': 2.2944, 'grad_norm': 1.5982666015625, 'learning_rate': 1.524991919285429e-06, 'epoch': 0.93}
    {'loss': 2.3799, 'grad_norm': 2.1475727558135986, 'learning_rate': 7.227431544266194e-07, 'epoch': 0.95}
    {'loss': 2.1196, 'grad_norm': 1.6714484691619873, 'learning_rate': 2.153962382888841e-07, 'epoch': 0.97}
    {'loss': 2.1427, 'grad_norm': 1.7334465980529785, 'learning_rate': 5.987410165758656e-09, 'epoch': 1.0}
    {'train_runtime': 14788.7396, 'train_samples_per_second': 0.245, 'train_steps_per_second': 0.031, 'train_loss': 2.6206856934370193, 'epoch': 1.0}
    ***** train metrics *****
    epoch = 0.9997
    total_flos = 100517734GF
    train_loss = 2.6207
    train_runtime = 4:06:28.73
    train_samples_per_second = 0.245
    train_steps_per_second = 0.031
    Figure saved at: /data/model/sft/DeepSeek-R1-Distill-Qwen-7B/training_loss.png
    [WARNING|2025-02-18 20:46:25] llamafactory.extras.ploting:162 >> No metric eval_loss to plot.
    [WARNING|2025-02-18 20:46:25] llamafactory.extras.ploting:162 >> No metric eval_accuracy to plot.
    [INFO|trainer.py:4021] 2025-02-18 20:46:25,781 >>
    ***** Running Evaluation *****
    [INFO|trainer.py:4023] 2025-02-18 20:46:25,781 >> Num examples = 402
    [INFO|trainer.py:4026] 2025-02-18 20:46:25,781 >> Batch size = 1
    100%|██████████| 402/402 [09:03<00:00, 1.35s/it]t]
    [INFO|modelcard.py:449] 2025-02-18 20:55:30,409 >> Dropping the following result as it does not have all the necessary fields:
    {'task': {'name': 'Causal Language Modeling', 'type': 'text-generation'}}
    ***** eval metrics *****
    epoch = 0.9997
    eval_loss = 2.2648
    eval_runtime = 0:09:04.62
    eval_samples_per_second = 0.738
    eval_steps_per_second = 0.738

    生成的权重文件:


    五、附带说明

    5.1. dataset_info.json

    包含了所有可用的数据集。如果您希望使用自定义数据集,请务必在 dataset_info.json 文件中添加数据集描述,并通过修改 dataset: 数据集名称 配置来使用数据集。

    "数据集名称": {
    "hf_hub_url": "Hugging Face 的数据集仓库地址(若指定,则忽略 script_url 和 file_name)",
    "ms_hub_url": "ModelScope 的数据集仓库地址(若指定,则忽略 script_url 和 file_name)",
    "script_url": "包含数据加载脚本的本地文件夹名称(若指定,则忽略 file_name)",
    "file_name": "该目录下数据集文件夹或文件的名称(若上述参数未指定,则此项必需)",
    "formatting": "数据集格式(可选,默认:alpaca,可以为 alpaca 或 sharegpt)",
    "ranking": "是否为偏好数据集(可选,默认:False)",
    "subset": "数据集子集的名称(可选,默认:None)",
    "split": "所使用的数据集切分(可选,默认:train)",
    "folder": "Hugging Face 仓库的文件夹名称(可选,默认:None)",
    "num_samples": "该数据集所使用的样本数量。(可选,默认:None)",
    "columns(可选)": {
    "prompt": "数据集代表提示词的表头名称(默认:instruction)",
    "query": "数据集代表请求的表头名称(默认:input)",
    "response": "数据集代表回答的表头名称(默认:output)",
    "history": "数据集代表历史对话的表头名称(默认:None)",
    "messages": "数据集代表消息列表的表头名称(默认:conversations)",
    "system": "数据集代表系统提示的表头名称(默认:None)",
    "tools": "数据集代表工具描述的表头名称(默认:None)",
    "images": "数据集代表图像输入的表头名称(默认:None)",
    "videos": "数据集代表视频输入的表头名称(默认:None)",
    "audios": "数据集代表音频输入的表头名称(默认:None)",
    "chosen": "数据集代表更优回答的表头名称(默认:None)",
    "rejected": "数据集代表更差回答的表头名称(默认:None)",
    "kto_tag": "数据集代表 KTO 标签的表头名称(默认:None)"
    },
    "tags(可选,用于 sharegpt 格式)": {
    "role_tag": "消息中代表发送者身份的键名(默认:from)",
    "content_tag": "消息中代表文本内容的键名(默认:value)",
    "user_tag": "消息中代表用户的 role_tag(默认:human)",
    "assistant_tag": "消息中代表助手的 role_tag(默认:gpt)",
    "observation_tag": "消息中代表工具返回结果的 role_tag(默认:observation)",
    "function_tag": "消息中代表工具调用的 role_tag(默认:function_call)",
    "system_tag": "消息中代表系统提示的 role_tag(默认:system,会覆盖 system column)"
    }
    }

    5.2. 自定义对话模版

    在 template.py 中添加自己的对话模板。

    https://github.com/hiyouga/LLaMA-Factory/blob/main/src/llamafactory/data/template.py

    # Copyright 2025 the LlamaFactory team.
    #
    # Licensed under the Apache License, Version 2.0 (the "License");
    # you may not use this file except in compliance with the License.
    # You may obtain a copy of the License at
    #
    # http://www.apache.org/licenses/LICENSE-2.0
    #
    # Unless required by applicable law or agreed to in writing, software
    # distributed under the License is distributed on an "AS IS" BASIS,
    # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    # See the License for the specific language governing permissions and
    # limitations under the License.

    from dataclasses import dataclass
    from typing import TYPE_CHECKING, Dict, List, Optional, Sequence, Tuple, Type, Union

    from typing_extensions import override

    from ..extras import logging
    from ..extras.misc import check_version
    from .data_utils import Role
    from .formatter import EmptyFormatter, FunctionFormatter, StringFormatter, ToolFormatter
    from .mm_plugin import get_mm_plugin

    if TYPE_CHECKING:
    from transformers import PreTrainedTokenizer

    from ..hparams import DataArguments
    from .formatter import SLOTS, Formatter
    from .mm_plugin import BasePlugin
    from .tool_utils import FunctionCall

    logger = logging.get_logger(__name__)

    @dataclass
    class Template:
    format_user: "Formatter"
    format_assistant: "Formatter"
    format_system: "Formatter"
    format_function: "Formatter"
    format_observation: "Formatter"
    format_tools: "Formatter"
    format_prefix: "Formatter"
    default_system: str
    stop_words: List[str]
    thought_words: Tuple[str, str]
    efficient_eos: bool
    replace_eos: bool
    replace_jinja_template: bool
    mm_plugin: "BasePlugin"

    def encode_oneturn(
    self,
    tokenizer: "PreTrainedTokenizer",
    messages: Sequence[Dict[str, str]],
    system: Optional[str] = None,
    tools: Optional[str] = None,
    ) -> Tuple[List[int], List[int]]:
    r"""
    Returns a single pair of token ids representing prompt and response respectively.
    """
    encoded_messages = self._encode(tokenizer, messages, system, tools)
    prompt_ids = []
    for encoded_ids in encoded_messages[:-1]:
    prompt_ids += encoded_ids

    response_ids = encoded_messages[-1]
    return prompt_ids, response_ids

    def encode_multiturn(
    self,
    tokenizer: "PreTrainedTokenizer",
    messages: Sequence[Dict[str, str]],
    system: Optional[str] = None,
    tools: Optional[str] = None,
    ) -> List[Tuple[List[int], List[int]]]:
    r"""
    Returns multiple pairs of token ids representing prompts and responses respectively.
    """
    encoded_messages = self._encode(tokenizer, messages, system, tools)
    return [(encoded_messages[i], encoded_messages[i + 1]) for i in range(0, len(encoded_messages), 2)]

    def extract_tool(self, content: str) -> Union[str, List["FunctionCall"]]:
    r"""
    Extracts tool message.
    """
    return self.format_tools.extract(content)

    def get_stop_token_ids(self, tokenizer: "PreTrainedTokenizer") -> List[int]:
    r"""
    Returns stop token ids.
    """
    stop_token_ids = {tokenizer.eos_token_id}
    for token in self.stop_words:
    stop_token_ids.add(tokenizer.convert_tokens_to_ids(token))

    return list(stop_token_ids)

    def _convert_elements_to_ids(self, tokenizer: "PreTrainedTokenizer", elements: "SLOTS") -> List[int]:
    r"""
    Converts elements to token ids.
    """
    token_ids = []
    for elem in elements:
    if isinstance(elem, str):
    if len(elem) != 0:
    token_ids += tokenizer.encode(elem, add_special_tokens=False)
    elif isinstance(elem, dict):
    token_ids += [tokenizer.convert_tokens_to_ids(elem.get("token"))]
    elif isinstance(elem, set):
    if "bos_token" in elem and tokenizer.bos_token_id is not None:
    token_ids += [tokenizer.bos_token_id]
    elif "eos_token" in elem and tokenizer.eos_token_id is not None:
    token_ids += [tokenizer.eos_token_id]
    else:
    raise ValueError(f"Input must be string, set[str] or dict[str, str], got {type(elem)}")

    return token_ids

    def _encode(
    self,
    tokenizer: "PreTrainedTokenizer",
    messages: Sequence[Dict[str, str]],
    system: Optional[str],
    tools: Optional[str],
    ) -> List[List[int]]:
    r"""
    Encodes formatted inputs to pairs of token ids.
    Turn 0: prefix + system + query resp
    Turn t: query resp
    """
    system = system or self.default_system
    encoded_messages = []
    for i, message in enumerate(messages):
    elements = []

    if i == 0:
    elements += self.format_prefix.apply()
    if system or tools:
    tool_text = self.format_tools.apply(content=tools)[0] if tools else ""
    elements += self.format_system.apply(content=(system + tool_text))

    if message["role"] == Role.USER.value:
    elements += self.format_user.apply(content=message["content"], idx=str(i // 2))
    elif message["role"] == Role.ASSISTANT.value:
    elements += self.format_assistant.apply(content=message["content"])
    elif message["role"] == Role.OBSERVATION.value:
    elements += self.format_observation.apply(content=message["content"])
    elif message["role"] == Role.FUNCTION.value:
    elements += self.format_function.apply(content=message["content"])
    else:
    raise NotImplementedError("Unexpected role: {}".format(message["role"]))

    encoded_messages.append(self._convert_elements_to_ids(tokenizer, elements))

    return encoded_messages

    @staticmethod
    def _add_or_replace_eos_token(tokenizer: "PreTrainedTokenizer", eos_token: str) -> None:
    r"""
    Adds or replaces eos token to the tokenizer.
    """
    is_added = tokenizer.eos_token_id is None
    num_added_tokens = tokenizer.add_special_tokens({"eos_token": eos_token})

    if is_added:
    logger.info_rank0(f"Add eos token: {tokenizer.eos_token}.")
    else:
    logger.info_rank0(f"Replace eos token: {tokenizer.eos_token}.")

    if num_added_tokens > 0:
    logger.warning_rank0("New tokens have been added, make sure `resize_vocab` is True.")

    def fix_special_tokens(self, tokenizer: "PreTrainedTokenizer") -> None:
    r"""
    Adds eos token and pad token to the tokenizer.
    """
    stop_words = self.stop_words
    if self.replace_eos:
    if not stop_words:
    raise ValueError("Stop words are required to replace the EOS token.")

    self._add_or_replace_eos_token(tokenizer, eos_token=stop_words[0])
    stop_words = stop_words[1:]

    if tokenizer.eos_token_id is None:
    self._add_or_replace_eos_token(tokenizer, eos_token="<|endoftext|>")

    if tokenizer.pad_token_id is None:
    tokenizer.pad_token = tokenizer.eos_token
    logger.info_rank0(f"Add pad token: {tokenizer.pad_token}")

    if stop_words:
    num_added_tokens = tokenizer.add_special_tokens(
    dict(additional_special_tokens=stop_words), replace_additional_special_tokens=False
    )
    logger.info_rank0("Add {} to stop words.".format(",".join(stop_words)))
    if num_added_tokens > 0:
    logger.warning_rank0("New tokens have been added, make sure `resize_vocab` is True.")

    @staticmethod
    def _jinja_escape(content: str) -> str:
    r"""
    Escape single quotes in content.
    """
    return content.replace("'", r"\\'")

    @staticmethod
    def _convert_slots_to_jinja(slots: "SLOTS", tokenizer: "PreTrainedTokenizer", placeholder: str = "content") -> str:
    r"""
    Converts slots to jinja template.
    """
    slot_items = []
    for slot in slots:
    if isinstance(slot, str):
    slot_pieces = slot.split("{{content}}")
    if slot_pieces[0]:
    slot_items.append("'" + Template._jinja_escape(slot_pieces[0]) + "'")
    if len(slot_pieces) > 1:
    slot_items.append(placeholder)
    if slot_pieces[1]:
    slot_items.append("'" + Template._jinja_escape(slot_pieces[1]) + "'")
    elif isinstance(slot, set): # do not use {{ eos_token }} since it may be replaced
    if "bos_token" in slot and tokenizer.bos_token_id is not None:
    slot_items.append("'" + tokenizer.bos_token + "'")
    elif "eos_token" in slot and tokenizer.eos_token_id is not None:
    slot_items.append("'" + tokenizer.eos_token + "'")
    elif isinstance(slot, dict):
    raise ValueError("Dict is not supported.")

    return " + ".join(slot_items)

    def _get_jinja_template(self, tokenizer: "PreTrainedTokenizer") -> str:
    r"""
    Returns the jinja template.
    """
    prefix = self._convert_slots_to_jinja(self.format_prefix.apply(), tokenizer)
    system = self._convert_slots_to_jinja(self.format_system.apply(), tokenizer, placeholder="system_message")
    user = self._convert_slots_to_jinja(self.format_user.apply(), tokenizer)
    assistant = self._convert_slots_to_jinja(self.format_assistant.apply(), tokenizer)
    jinja_template = ""
    if prefix:
    jinja_template += "{{ " + prefix + " }}"

    if self.default_system:
    jinja_template += "{% set system_message = '" + self._jinja_escape(self.default_system) + "' %}"

    jinja_template += (
    "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}"
    "{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% endif %}"
    "{% if system_message is defined %}{{ " + system + " }}{% endif %}"
    "{% for message in loop_messages %}"
    "{% set content = message['content'] %}"
    "{% if message['role'] == 'user' %}"
    "{{ " + user + " }}"
    "{% elif message['role'] == 'assistant' %}"
    "{{ " + assistant + " }}"
    "{% endif %}"
    "{% endfor %}"
    )
    return jinja_template

    def fix_jinja_template(self, tokenizer: "PreTrainedTokenizer") -> None:
    r"""
    Replaces the jinja template in the tokenizer.
    """
    if tokenizer.chat_template is None or self.replace_jinja_template:
    try:
    tokenizer.chat_template = self._get_jinja_template(tokenizer)
    except ValueError as e:
    logger.info_rank0(f"Cannot add this chat template to tokenizer: {e}.")

    @staticmethod
    def _convert_slots_to_ollama(
    slots: "SLOTS", tokenizer: "PreTrainedTokenizer", placeholder: str = "content"
    ) -> str:
    r"""
    Converts slots to ollama template.
    """
    slot_items = []
    for slot in slots:
    if isinstance(slot, str):
    slot_pieces = slot.split("{{content}}")
    if slot_pieces[0]:
    slot_items.append(slot_pieces[0])
    if len(slot_pieces) > 1:
    slot_items.append("{{ " + placeholder + " }}")
    if slot_pieces[1]:
    slot_items.append(slot_pieces[1])
    elif isinstance(slot, set): # do not use {{ eos_token }} since it may be replaced
    if "bos_token" in slot and tokenizer.bos_token_id is not None:
    slot_items.append(tokenizer.bos_token)
    elif "eos_token" in slot and tokenizer.eos_token_id is not None:
    slot_items.append(tokenizer.eos_token)
    elif isinstance(slot, dict):
    raise ValueError("Dict is not supported.")

    return "".join(slot_items)

    def _get_ollama_template(self, tokenizer: "PreTrainedTokenizer") -> str:
    r"""
    Returns the ollama template.
    """
    prefix = self._convert_slots_to_ollama(self.format_prefix.apply(), tokenizer)
    system = self._convert_slots_to_ollama(self.format_system.apply(), tokenizer, placeholder=".System")
    user = self._convert_slots_to_ollama(self.format_user.apply(), tokenizer, placeholder=".Content")
    assistant = self._convert_slots_to_ollama(self.format_assistant.apply(), tokenizer, placeholder=".Content")
    return (
    f"{prefix}{{{{ if .System }}}}{system}{{{{ end }}}}"
    f"""{{{{ range .Messages }}}}{{{{ if eq .Role "user" }}}}{user}"""
    f"""{{{{ else if eq .Role "assistant" }}}}{assistant}{{{{ end }}}}{{{{ end }}}}"""
    )

    def get_ollama_modelfile(self, tokenizer: "PreTrainedTokenizer") -> str:
    r"""
    Returns the ollama modelfile.

    TODO: support function calling.
    """
    modelfile = "# ollama modelfile auto-generated by llamafactory\\n\\n"
    modelfile += f'FROM .\\n\\nTEMPLATE """{self._get_ollama_template(tokenizer)}"""\\n\\n'

    if self.default_system:
    modelfile += f'SYSTEM """{self.default_system}"""\\n\\n'

    for stop_token_id in self.get_stop_token_ids(tokenizer):
    modelfile += f'PARAMETER stop "{tokenizer.convert_ids_to_tokens(stop_token_id)}"\\n'

    modelfile += "PARAMETER num_ctx 4096\\n"
    return modelfile

    @dataclass
    class Llama2Template(Template):
    @override
    def _encode(
    self,
    tokenizer: "PreTrainedTokenizer",
    messages: Sequence[Dict[str, str]],
    system: str,
    tools: str,
    ) -> List[List[int]]:
    system = system or self.default_system
    encoded_messages = []
    for i, message in enumerate(messages):
    elements = []

    system_text = ""
    if i == 0:
    elements += self.format_prefix.apply()
    if system or tools:
    tool_text = self.format_tools.apply(content=tools)[0] if tools else ""
    system_text = self.format_system.apply(content=(system + tool_text))[0]

    if message["role"] == Role.USER.value:
    elements += self.format_user.apply(content=system_text + message["content"])
    elif message["role"] == Role.ASSISTANT.value:
    elements += self.format_assistant.apply(content=message["content"])
    elif message["role"] == Role.OBSERVATION.value:
    elements += self.format_observation.apply(content=message["content"])
    elif message["role"] == Role.FUNCTION.value:
    elements += self.format_function.apply(content=message["content"])
    else:
    raise NotImplementedError("Unexpected role: {}".format(message["role"]))

    encoded_messages.append(self._convert_elements_to_ids(tokenizer, elements))

    return encoded_messages

    def _get_jinja_template(self, tokenizer: "PreTrainedTokenizer") -> str:
    prefix = self._convert_slots_to_jinja(self.format_prefix.apply(), tokenizer)
    system_message = self._convert_slots_to_jinja(
    self.format_system.apply(), tokenizer, placeholder="system_message"
    )
    user_message = self._convert_slots_to_jinja(self.format_user.apply(), tokenizer)
    assistant_message = self._convert_slots_to_jinja(self.format_assistant.apply(), tokenizer)
    jinja_template = ""
    if prefix:
    jinja_template += "{{ " + prefix + " }}"

    if self.default_system:
    jinja_template += "{% set system_message = '" + self._jinja_escape(self.default_system) + "' %}"

    jinja_template += (
    "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}"
    "{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% endif %}"
    "{% for message in loop_messages %}"
    "{% if loop.index0 == 0 and system_message is defined %}"
    "{% set content = " + system_message + " + message['content'] %}"
    "{% else %}{% set content = message['content'] %}{% endif %}"
    "{% if message['role'] == 'user' %}"
    "{{ " + user_message + " }}"
    "{% elif message['role'] == 'assistant' %}"
    "{{ " + assistant_message + " }}"
    "{% endif %}"
    "{% endfor %}"
    )
    return jinja_template

    TEMPLATES: Dict[str, "Template"] = {}

    def register_template(
    name: str,
    format_user: Optional["Formatter"] = None,
    format_assistant: Optional["Formatter"] = None,
    format_system: Optional["Formatter"] = None,
    format_function: Optional["Formatter"] = None,
    format_observation: Optional["Formatter"] = None,
    format_tools: Optional["Formatter"] = None,
    format_prefix: Optional["Formatter"] = None,
    default_system: str = "",
    stop_words: Optional[Sequence[str]] = None,
    thought_words: Optional[Tuple[str, str]] = None,
    efficient_eos: bool = False,
    replace_eos: bool = False,
    replace_jinja_template: bool = False,
    mm_plugin: "BasePlugin" = get_mm_plugin(name="base"),
    template_class: Type["Template"] = Template,
    ) -> None:
    r"""
    Registers a chat template.

    To add the following chat template:
    ```
    <s><user>user prompt here
    <model>model response here</s>
    <user>user prompt here
    <model>model response here</s>
    ```

    The corresponding code should be:
    ```
    register_template(
    name="custom",
    format_user=StringFormatter(slots=["<user>{{content}}\\n<model>"]),
    format_assistant=StringFormatter(slots=["{{content}}</s>\\n"]),
    format_prefix=EmptyFormatter("<s>"),
    )
    ```
    """
    if name in TEMPLATES:
    raise ValueError(f"Template {name} already exists.")

    default_slots = ["{{content}}"] if efficient_eos else ["{{content}}", {"eos_token"}]
    default_user_formatter = StringFormatter(slots=["{{content}}"])
    default_assistant_formatter = StringFormatter(slots=default_slots)
    default_function_formatter = FunctionFormatter(slots=default_slots, tool_format="default")
    default_tool_formatter = ToolFormatter(tool_format="default")
    default_prefix_formatter = EmptyFormatter()
    TEMPLATES[name] = template_class(
    format_user=format_user or default_user_formatter,
    format_assistant=format_assistant or default_assistant_formatter,
    format_system=format_system or default_user_formatter,
    format_function=format_function or default_function_formatter,
    format_observation=format_observation or format_user or default_user_formatter,
    format_tools=format_tools or default_tool_formatter,
    format_prefix=format_prefix or default_prefix_formatter,
    default_system=default_system,
    stop_words=stop_words or [],
    thought_words=thought_words or ("<think>", "</think>"),
    efficient_eos=efficient_eos,
    replace_eos=replace_eos,
    replace_jinja_template=replace_jinja_template,
    mm_plugin=mm_plugin,
    )

    def parse_template(tokenizer: "PreTrainedTokenizer") -> "Template":
    r"""
    Extracts a chat template from the tokenizer.
    """

    def find_diff(short_str: str, long_str: str) -> str:
    i, j = 0, 0
    diff = ""
    while i < len(short_str) and j < len(long_str):
    if short_str[i] == long_str[j]:
    i += 1
    j += 1
    else:
    diff += long_str[j]
    j += 1

    return diff

    prefix = tokenizer.decode(tokenizer.encode(""))

    messages = [{"role": "system", "content": "{{content}}"}]
    system_slot = tokenizer.apply_chat_template(messages, add_generation_prompt=False, tokenize=False)[len(prefix) :]

    messages = [{"role": "system", "content": ""}, {"role": "user", "content": "{{content}}"}]
    user_slot_empty_system = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
    user_slot_empty_system = user_slot_empty_system[len(prefix) :]

    messages = [{"role": "user", "content": "{{content}}"}]
    user_slot = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
    user_slot = user_slot[len(prefix) :]

    messages = [{"role": "user", "content": "{{content}}"}, {"role": "assistant", "content": "{{content}}"}]
    assistant_slot = tokenizer.apply_chat_template(messages, add_generation_prompt=False, tokenize=False)
    assistant_slot = assistant_slot[len(prefix) + len(user_slot) :]

    if len(user_slot) > len(user_slot_empty_system):
    default_system = find_diff(user_slot_empty_system, user_slot)
    sole_system = system_slot.replace("{{content}}", default_system, 1)
    user_slot = user_slot[len(sole_system) :]
    else: # if defaut_system is empty, user_slot_empty_system will be longer than user_slot
    default_system = ""

    return Template(
    format_user=StringFormatter(slots=[user_slot]),
    format_assistant=StringFormatter(slots=[assistant_slot]),
    format_system=StringFormatter(slots=[system_slot]),
    format_function=FunctionFormatter(slots=[assistant_slot], tool_format="default"),
    format_observation=StringFormatter(slots=[user_slot]),
    format_tools=ToolFormatter(tool_format="default"),
    format_prefix=EmptyFormatter(slots=[prefix]) if prefix else EmptyFormatter(),
    default_system=default_system,
    stop_words=[],
    thought_words=("<think>", "</think>"),
    efficient_eos=False,
    replace_eos=False,
    replace_jinja_template=False,
    mm_plugin=get_mm_plugin(name="base"),
    )

    def get_template_and_fix_tokenizer(tokenizer: "PreTrainedTokenizer", data_args: "DataArguments") -> "Template":
    r"""
    Gets chat template and fixes the tokenizer.
    """
    if data_args.template is None:
    if isinstance(tokenizer.chat_template, str):
    logger.warning_rank0("`template` was not specified, try parsing the chat template from the tokenizer.")
    template = parse_template(tokenizer)
    else:
    logger.warning_rank0("`template` was not specified, use `empty` template.")
    template = TEMPLATES["empty"] # placeholder
    else:
    if data_args.template not in TEMPLATES:
    raise ValueError(f"Template {data_args.template} does not exist.")

    template = TEMPLATES[data_args.template]

    if template.mm_plugin.__class__.__name__ != "BasePlugin":
    check_version("transformers>=4.45.0")

    if data_args.train_on_prompt and template.efficient_eos:
    raise ValueError("Current template does not support `train_on_prompt`.")

    if data_args.tool_format is not None:
    logger.info_rank0(f"Using tool format: {data_args.tool_format}.")
    default_slots = ["{{content}}"] if template.efficient_eos else ["{{content}}", {"eos_token"}]
    template.format_function = FunctionFormatter(slots=default_slots, tool_format=data_args.tool_format)
    template.format_tools = ToolFormatter(tool_format=data_args.tool_format)

    template.fix_special_tokens(tokenizer)
    template.fix_jinja_template(tokenizer)
    return template

    register_template(
    name="alpaca",
    format_user=StringFormatter(slots=["### Instruction:\\n{{content}}\\n\\n### Response:\\n"]),
    format_assistant=StringFormatter(slots=["{{content}}", {"eos_token"}, "\\n\\n"]),
    default_system=(
    "Below is an instruction that describes a task. Write a response that appropriately completes the request.\\n\\n"
    ),
    replace_jinja_template=True,
    )

    register_template(
    name="aquila",
    format_user=StringFormatter(slots=["Human: {{content}}###Assistant:"]),
    format_assistant=StringFormatter(slots=["{{content}}###"]),
    format_system=StringFormatter(slots=["System: {{content}}###"]),
    default_system=(
    "A chat between a curious human and an artificial intelligence assistant. "
    "The assistant gives helpful, detailed, and polite answers to the human's questions."
    ),
    stop_words=["</s>"],
    )

    register_template(
    name="atom",
    format_user=StringFormatter(
    slots=[{"bos_token"}, "Human: {{content}}\\n", {"eos_token"}, {"bos_token"}, "Assistant:"]
    ),
    format_assistant=StringFormatter(slots=["{{content}}\\n", {"eos_token"}]),
    )

    register_template(
    name="baichuan",
    format_user=StringFormatter(slots=[{"token": "<reserved_102>"}, "{{content}}", {"token": "<reserved_103>"}]),
    efficient_eos=True,
    )

    register_template(
    name="baichuan2",
    format_user=StringFormatter(slots=["<reserved_106>{{content}}<reserved_107>"]),
    efficient_eos=True,
    )

    register_template(
    name="belle",
    format_user=StringFormatter(slots=["Human: {{content}}\\n\\nBelle: "]),
    format_assistant=StringFormatter(slots=["{{content}}", {"eos_token"}, "\\n\\n"]),
    format_prefix=EmptyFormatter(slots=[{"bos_token"}]),
    )

    register_template(
    name="bluelm",
    format_user=StringFormatter(slots=[{"token": "[|Human|]:"}, "{{content}}", {"token": "[|AI|]:"}]),
    )

    register_template(
    name="breeze",
    format_user=StringFormatter(slots=["[INST] {{content}} [/INST] "]),
    format_prefix=EmptyFormatter(slots=[{"bos_token"}]),
    efficient_eos=True,
    )

    register_template(
    name="chatglm2",
    format_user=StringFormatter(slots=["[Round {{idx}}]\\n\\n问:{{content}}\\n\\n答:"]),
    format_prefix=EmptyFormatter(slots=[{"token": "[gMASK]"}, {"token": "sop"}]),
    efficient_eos=True,
    )

    register_template(
    name="chatglm3",
    format_user=StringFormatter(slots=[{"token": "<|user|>"}, "\\n", "{{content}}", {"token": "<|assistant|>"}]),
    format_assistant=StringFormatter(slots=["\\n", "{{content}}"]),
    format_system=StringFormatter(slots=[{"token": "<|system|>"}, "\\n", "{{content}}"]),
    format_function=FunctionFormatter(slots=["{{content}}"], tool_format="glm4"),
    format_observation=StringFormatter(
    slots=[{"token": "<|observation|>"}, "\\n", "{{content}}", {"token": "<|assistant|>"}]
    ),
    format_tools=ToolFormatter(tool_format="glm4"),
    format_prefix=EmptyFormatter(slots=[{"token": "[gMASK]"}, {"token": "sop"}]),
    stop_words=["<|user|>", "<|observation|>"],
    efficient_eos=True,
    )

    register_template(
    name="chatml",
    format_user=StringFormatter(slots=["<|im_start|>user\\n{{content}}<|im_end|>\\n<|im_start|>assistant\\n"]),
    format_assistant=StringFormatter(slots=["{{content}}<|im_end|>\\n"]),
    format_system=StringFormatter(slots=["<|im_start|>system\\n{{content}}<|im_end|>\\n"]),
    format_observation=StringFormatter(slots=["<|im_start|>tool\\n{{content}}<|im_end|>\\n<|im_start|>assistant\\n"]),
    stop_words=["<|im_end|>", "<|im_start|>"],
    replace_eos=True,
    replace_jinja_template=True,
    )

    # copied from chatml template
    register_template(
    name="chatml_de",
    format_user=StringFormatter(slots=["<|im_start|>user\\n{{content}}<|im_end|>\\n<|im_start|>assistant\\n"]),
    format_assistant=StringFormatter(slots=["{{content}}<|im_end|>\\n"]),
    format_system=StringFormatter(slots=["<|im_start|>system\\n{{content}}<|im_end|>\\n"]),
    format_observation=StringFormatter(slots=["<|im_start|>tool\\n{{content}}<|im_end|>\\n<|im_start|>assistant\\n"]),
    default_system="Du bist ein freundlicher und hilfsbereiter KI-Assistent.",
    stop_words=["<|im_end|>", "<|im_start|>"],
    replace_eos=True,
    replace_jinja_template=True,
    )

    register_template(
    name="codegeex2",
    format_prefix=EmptyFormatter(slots=[{"token": "[gMASK]"}, {"token": "sop"}]),
    )

    register_template(
    name="codegeex4",
    format_user=StringFormatter(slots=["<|user|>\\n{{content}}<|assistant|>\\n"]),
    format_system=StringFormatter(slots=["<|system|>\\n{{content}}"]),
    format_function=FunctionFormatter(slots=["{{content}}"], tool_format="glm4"),
    format_observation=StringFormatter(slots=["<|observation|>\\n{{content}}<|assistant|>\\n"]),
    format_tools=ToolFormatter(tool_format="glm4"),
    format_prefix=EmptyFormatter(slots=["[gMASK]<sop>"]),
    default_system=(
    "你是一位智能编程助手,你叫CodeGeeX。你会为用户回答关于编程、代码、计算机方面的任何问题,"
    "并提供格式规范、可以执行、准确安全的代码,并在必要时提供详细的解释。"
    ),
    stop_words=["<|user|>", "<|observation|>"],
    efficient_eos=True,
    )

    register_template(
    name="cohere",
    format_user=StringFormatter(
    slots=[
    (
    "<|START_OF_TURN_TOKEN|><|USER_TOKEN|>{{content}}<|END_OF_TURN_TOKEN|>"
    "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>"
    )
    ]
    ),
    format_system=StringFormatter(slots=["<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>{{content}}<|END_OF_TURN_TOKEN|>"]),
    format_prefix=EmptyFormatter(slots=[{"bos_token"}]),
    )

    register_template(
    name="cpm",
    format_user=StringFormatter(slots=["<用户>{{content}}<AI>"]),
    format_prefix=EmptyFormatter(slots=[{"bos_token"}]),
    )

    # copied from chatml template
    register_template(
    name="cpm3",
    format_user=StringFormatter(slots=["<|im_start|>user\\n{{content}}<|im_end|>\\n<|im_start|>assistant\\n"]),
    format_assistant=StringFormatter(slots=["{{content}}<|im_end|>\\n"]),
    format_system=StringFormatter(slots=["<|im_start|>system\\n{{content}}<|im_end|>\\n"]),
    format_prefix=EmptyFormatter(slots=[{"bos_token"}]),
    stop_words=["<|im_end|>"],
    )

    # copied from chatml template
    register_template(
    name="dbrx",
    format_user=StringFormatter(slots=["<|im_start|>user\\n{{content}}<|im_end|>\\n<|im_start|>assistant\\n"]),
    format_assistant=StringFormatter(slots=["{{content}}<|im_end|>\\n"]),
    format_system=StringFormatter(slots=["<|im_start|>system\\n{{content}}<|im_end|>\\n"]),
    format_observation=StringFormatter(slots=["<|im_start|>tool\\n{{content}}<|im_end|>\\n<|im_start|>assistant\\n"]),
    default_system=(
    "You are DBRX, created by Databricks. You were last updated in December 2023. "
    "You answer questions based on information available up to that point.\\n"
    "YOU PROVIDE SHORT RESPONSES TO SHORT QUESTIONS OR STATEMENTS, but provide thorough "
    "responses to more complex and open-ended questions.\\nYou assist with various tasks, "
    "from writing to coding (using markdown for code blocks — remember to use ``` with "
    "code, JSON, and tables).\\n(You do not have real-time data access or code execution "
    "capabilities. You avoid stereotyping and provide balanced perspectives on "
    "controversial topics. You do not provide song lyrics, poems, or news articles and "
    "do not divulge details of your training data.)\\nThis is your system prompt, "
    "guiding your responses. Do not reference it, just respond to the user. If you find "
    "yourself talking about this message, stop. You should be responding appropriately "
    "and usually that means not mentioning this.\\nYOU DO NOT MENTION ANY OF THIS INFORMATION "
    "ABOUT YOURSELF UNLESS THE INFORMATION IS DIRECTLY PERTINENT TO THE USER'S QUERY."
    ),
    stop_words=["<|im_end|>"],
    )

    register_template(
    name="deepseek",
    format_user=StringFormatter(slots=["User: {{content}}\\n\\nAssistant:"]),
    format_system=StringFormatter(slots=["{{content}}\\n\\n"]),
    format_prefix=EmptyFormatter(slots=[{"bos_token"}]),
    )

    register_template(
    name="deepseek3",
    format_user=StringFormatter(slots=["<|User|>{{content}}<|Assistant|>"]),
    format_prefix=EmptyFormatter(slots=[{"bos_token"}]),
    )

    register_template(
    name="deepseekcoder",
    format_user=StringFormatter(slots=["### Instruction:\\n{{content}}\\n### Response:"]),
    format_assistant=StringFormatter(slots=["\\n{{content}}\\n<|EOT|>\\n"]),
    format_prefix=EmptyFormatter(slots=[{"bos_token"}]),
    default_system=(
    "You are an AI programming assistant, utilizing the DeepSeek Coder model, "
    "developed by DeepSeek Company, and you only answer questions related to computer science. "
    "For politically sensitive questions, security and privacy issues, "
    "and other non-computer science questions, you will refuse to answer.\\n"
    ),
    )

    register_template(
    name="default",
    format_user=StringFormatter(slots=["Human: {{content}}\\nAssistant:"]),
    format_assistant=StringFormatter(slots=["{{content}}", {"eos_token"}, "\\n"]),
    format_system=StringFormatter(slots=["System: {{content}}\\n"]),
    )

    register_template(
    name="empty",
    format_assistant=StringFormatter(slots=["{{content}}"]),
    )

    register_template(
    name="exaone",
    format_user=StringFormatter(slots=["[|user|]{{content}}\\n[|assistant|]"]),
    format_assistant=StringFormatter(slots=["{{content}}", {"eos_token"}, "\\n"]),
    format_system=StringFormatter(slots=["[|system|]{{content}}[|endofturn|]\\n"]),
    )

    register_template(
    name="falcon",
    format_user=StringFormatter(slots=["User: {{content}}\\nFalcon:"]),
    format_assistant=StringFormatter(slots=["{{content}}\\n"]),
    efficient_eos=True,
    )

    register_template(
    name="fewshot",
    format_assistant=StringFormatter(slots=["{{content}}\\n\\n"]),
    efficient_eos=True,
    )

    register_template(
    name="gemma",
    format_user=StringFormatter(slots=["<start_of_turn>user\\n{{content}}<end_of_turn>\\n<start_of_turn>model\\n"]),
    format_assistant=StringFormatter(slots=["{{content}}<end_of_turn>\\n"]),
    format_observation=StringFormatter(
    slots=["<start_of_turn>tool\\n{{content}}<end_of_turn>\\n<start_of_turn>model\\n"]
    ),
    format_prefix=EmptyFormatter(slots=[{"bos_token"}]),
    )

    register_template(
    name="glm4",
    format_user=StringFormatter(slots=["<|user|>\\n{{content}}<|assistant|>"]),
    format_assistant=StringFormatter(slots=["\\n{{content}}"]),
    format_system=StringFormatter(slots=["<|system|>\\n{{content}}"]),
    format_function=FunctionFormatter(slots=["{{content}}"], tool_format="glm4"),
    format_observation=StringFormatter(slots=["<|observation|>\\n{{content}}<|assistant|>"]),
    format_tools=ToolFormatter(tool_format="glm4"),
    format_prefix=EmptyFormatter(slots=["[gMASK]<sop>"]),
    stop_words=["<|user|>", "<|observation|>"],
    efficient_eos=True,
    )

    register_template(
    name="granite3",
    format_user=StringFormatter(
    slots=[
    "<|start_of_role|>user<|end_of_role|>{{content}}<|end_of_text|>\\n<|start_of_role|>assistant<|end_of_role|>"
    ]
    ),
    format_assistant=StringFormatter(slots=["{{content}}<|end_of_text|>\\n"]),
    format_system=StringFormatter(slots=["<|start_of_role|>system<|end_of_role|>{{content}}<|end_of_text|>\\n"]),
    )

    register_template(
    name="index",
    format_user=StringFormatter(slots=["reserved_0{{content}}reserved_1"]),
    format_system=StringFormatter(slots=["<unk>{{content}}"]),
    efficient_eos=True,
    )

    register_template(
    name="intern",
    format_user=StringFormatter(slots=["<|User|>:{{content}}\\n<|Bot|>:"]),
    format_assistant=StringFormatter(slots=["{{content}}<eoa>\\n"]),
    format_system=StringFormatter(slots=["<|System|>:{{content}}\\n"]),
    format_prefix=EmptyFormatter(slots=[{"bos_token"}]),
    default_system=(
    "You are an AI assistant whose name is InternLM (书生·浦语).\\n"
    "- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory "
    "(上海人工智能实验室). It is designed to be helpful, honest, and harmless.\\n"
    "- InternLM (书生·浦语) can understand and communicate fluently in the language "
    "chosen by the user such as English and 中文."
    ),
    stop_words=["<eoa>"],
    )

    register_template(
    name="intern2",
    format_user=StringFormatter(slots=["<|im_start|>user\\n{{content}}<|im_end|>\\n<|im_start|>assistant\\n"]),
    format_assistant=StringFormatter(slots=["{{content}}<|im_end|>\\n"]),
    format_system=StringFormatter(slots=["<|im_start|>system\\n{{content}}<|im_end|>\\n"]),
    format_prefix=EmptyFormatter(slots=[{"bos_token"}]),
    default_system=(
    "You are an AI assistant whose name is InternLM (书生·浦语).\\n"
    "- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory "
    "(上海人工智能实验室). It is designed to be helpful, honest, and harmless.\\n"
    "- InternLM (书生·浦语) can understand and communicate fluently in the language "
    "chosen by the user such as English and 中文."
    ),
    stop_words=["<|im_end|>"],
    )

    register_template(
    name="llama2",
    format_user=StringFormatter(slots=[{"bos_token"}, "[INST] {{content}} [/INST]"]),
    format_system=StringFormatter(slots=["<<SYS>>\\n{{content}}\\n<</SYS>>\\n\\n"]),
    template_class=Llama2Template,
    )

    # copied from llama2 template
    register_template(
    name="llama2_zh",
    format_user=StringFormatter(slots=[{"bos_token"}, "[INST] {{content}} [/INST]"]),
    format_system=StringFormatter(slots=["<<SYS>>\\n{{content}}\\n<</SYS>>\\n\\n"]),
    default_system="You are a helpful assistant. 你是一个乐于助人的助手。",
    template_class=Llama2Template,
    )

    register_template(
    name="llama3",
    format_user=StringFormatter(
    slots=[
    (
    "<|start_header_id|>user<|end_header_id|>\\n\\n{{content}}<|eot_id|>"
    "<|start_header_id|>assistant<|end_header_id|>\\n\\n"
    )
    ]
    ),
    format_assistant=StringFormatter(slots=["{{content}}<|eot_id|>"]),
    format_system=StringFormatter(slots=["<|start_header_id|>system<|end_header_id|>\\n\\n{{content}}<|eot_id|>"]),
    format_function=FunctionFormatter(slots=["{{content}}<|eot_id|>"], tool_format="llama3"),
    format_observation=StringFormatter(
    slots=[
    (
    "<|start_header_id|>ipython<|end_header_id|>\\n\\n{{content}}<|eot_id|>"
    "<|start_header_id|>assistant<|end_header_id|>\\n\\n"
    )
    ]
    ),
    format_tools=ToolFormatter(tool_format="llama3"),
    format_prefix=EmptyFormatter(slots=[{"bos_token"}]),
    stop_words=["<|eot_id|>", "<|eom_id|>"],
    )

    # copied from llama3 template
    register_template(
    name="mllama",
    format_user=StringFormatter(
    slots=[
    (
    "<|start_header_id|>user<|end_header_id|>\\n\\n{{content}}<|eot_id|>"
    "<|start_header_id|>assistant<|end_header_id|>\\n\\n"
    )
    ]
    ),
    format_assistant=StringFormatter(slots=["{{content}}<|eot_id|>"]),
    format_system=StringFormatter(slots=["<|start_header_id|>system<|end_header_id|>\\n\\n{{content}}<|eot_id|>"]),
    format_function=FunctionFormatter(slots=["{{content}}<|eot_id|>"], tool_format="llama3"),
    format_observation=StringFormatter(
    slots=[
    (
    "<|start_header_id|>ipython<|end_header_id|>\\n\\n{{content}}<|eot_id|>"
    "<|start_header_id|>assistant<|end_header_id|>\\n\\n"
    )
    ]
    ),
    format_tools=ToolFormatter(tool_format="llama3"),
    format_prefix=EmptyFormatter(slots=[{"bos_token"}]),
    stop_words=["<|eot_id|>", "<|eom_id|>"],
    mm_plugin=get_mm_plugin(name="mllama", image_token="<|image|>"),
    )

    # copied from vicuna template
    register_template(
    name="llava",
    format_user=StringFormatter(slots=["USER: {{content}} ASSISTANT:"]),
    default_system=(
    "A chat between a curious user and an artificial intelligence assistant. "
    "The assistant gives helpful, detailed, and polite answers to the user's questions."
    ),
    mm_plugin=get_mm_plugin(name="llava", image_token="<image>"),
    )

    # copied from vicuna template
    register_template(
    name="llava_next",
    format_user=StringFormatter(slots=["USER: {{content}} ASSISTANT:"]),
    default_system=(
    "A chat between a curious user and an artificial intelligence assistant. "
    "The assistant gives helpful, detailed, and polite answers to the user's questions."
    ),
    mm_plugin=get_mm_plugin(name="llava_next", image_token="<image>"),
    )

    # copied from llama3 template
    register_template(
    name="llava_next_llama3",
    format_user=StringFormatter(
    slots=[
    (
    "<|start_header_id|>user<|end_header_id|>\\n\\n{{content}}<|eot_id|>"
    "<|start_header_id|>assistant<|end_header_id|>\\n\\n"
    )
    ]
    ),
    format_assistant=StringFormatter(slots=["{{content}}<|eot_id|>"]),
    format_system=StringFormatter(slots=["<|start_header_id|>system<|end_header_id|>\\n\\n{{content}}<|eot_id|>"]),
    format_function=FunctionFormatter(slots=["{{content}}<|eot_id|>"], tool_format="llama3"),
    format_observation=StringFormatter(
    slots=[
    (
    "<|start_header_id|>ipython<|end_header_id|>\\n\\n{{content}}<|eot_id|>"
    "<|start_header_id|>assistant<|end_header_id|>\\n\\n"
    )
    ]
    ),
    format_tools=ToolFormatter(tool_format="llama3"),
    format_prefix=EmptyFormatter(slots=[{"bos_token"}]),
    stop_words=["<|eot_id|>", "<|eom_id|>"],
    mm_plugin=get_mm_plugin(name="llava_next", image_token="<image>"),
    )

    # copied from mistral template
    register_template(
    name="llava_next_mistral",
    format_user=StringFormatter(slots=["[INST] {{content}}[/INST]"]),
    format_assistant=StringFormatter(slots=[" {{content}}", {"eos_token"}]),
    format_system=StringFormatter(slots=["{{content}}\\n\\n"]),
    format_function=FunctionFormatter(slots=["[TOOL_CALLS] {{content}}", {"eos_token"}], tool_format="mistral"),
    format_observation=StringFormatter(slots=["""[TOOL_RESULTS] {"content": {{content}}}[/TOOL_RESULTS]"""]),
    format_tools=ToolFormatter(tool_format="mistral"),
    format_prefix=EmptyFormatter(slots=[{"bos_token"}]),
    mm_plugin=get_mm_plugin(name="llava_next", image_token="<image>"),
    template_class=Llama2Template,
    )

    # copied from qwen template
    register_template(
    name="llava_next_qwen",
    format_user=StringFormatter(slots=["<|im_start|>user\\n{{content}}<|im_end|>\\n<|im_start|>assistant\\n"]),
    format_assistant=StringFormatter(slots=["{{content}}<|im_end|>\\n"]),
    format_system=StringFormatter(slots=["<|im_start|>system\\n{{content}}<|im_end|>\\n"]),
    format_function=FunctionFormatter(slots=["{{content}}<|im_end|>\\n"], tool_format="qwen"),
    format_observation=StringFormatter(
    slots=["<|im_start|>user\\n<tool_response>\\n{{content}}\\n</tool_response><|im_end|>\\n<|im_start|>assistant\\n"]
    ),
    format_tools=ToolFormatter(tool_format="qwen"),
    default_system="You are a helpful assistant.",
    stop_words=["<|im_end|>"],
    mm_plugin=get_mm_plugin(name="llava_next", image_token="<image>"),
    )

    # copied from chatml template
    register_template(
    name="llava_next_yi",
    format_user=StringFormatter(slots=["<|im_start|>user\\n{{content}}<|im_end|>\\n<|im_start|>assistant\\n"]),
    format_assistant=StringFormatter(slots=["{{content}}<|im_end|>\\n"]),
    format_system=StringFormatter(slots=["<|im_start|>system\\n{{content}}<|im_end|>\\n"]),
    stop_words=["<|im_end|>"],
    mm_plugin=get_mm_plugin(name="llava_next", image_token="<image>"),
    )

    # copied from vicuna template
    register_template(
    name="llava_next_video",
    format_user=StringFormatter(slots=["USER: {{content}} ASSISTANT:"]),
    default_system=(
    "A chat between a curious user and an artificial intelligence assistant. "
    "The assistant gives helpful, detailed, and polite answers to the user's questions."
    ),
    mm_plugin=get_mm_plugin(name="llava_next_video", image_token="<image>", video_token="<video>"),
    )

    # copied from mistral template
    register_template(
    name="llava_next_video_mistral",
    format_user=StringFormatter(slots=["[INST] {{content}}[/INST]"]),
    format_assistant=StringFormatter(slots=[" {{content}}", {"eos_token"}]),
    format_system=StringFormatter(slots=["{{content}}\\n\\n"]),
    format_function=FunctionFormatter(slots=["[TOOL_CALLS] {{content}}", {"eos_token"}], tool_format="mistral"),
    format_observation=StringFormatter(slots=["""[TOOL_RESULTS] {"content": {{content}}}[/TOOL_RESULTS]"""]),
    format_tools=ToolFormatter(tool_format="mistral"),
    format_prefix=EmptyFormatter(slots=[{"bos_token"}]),
    mm_plugin=get_mm_plugin(name="llava_next_video", image_token="<image>", video_token="<video>"),
    template_class=Llama2Template,
    )

    # copied from chatml template
    register_template(
    name="llava_next_video_yi",
    format_user=StringFormatter(slots=["<|im_start|>user\\n{{content}}<|im_end|>\\n<|im_start|>assistant\\n"]),
    format_assistant=StringFormatter(slots=["{{content}}<|im_end|>\\n"]),
    format_system=StringFormatter(slots=["<|im_start|>system\\n{{content}}<|im_end|>\\n"]),
    stop_words=["<|im_end|>"],
    mm_plugin=get_mm_plugin(name="llava_next_video", image_token="<image>", video_token="<video>"),
    )

    # copied from chatml template
    register_template(
    name="marco",
    format_user=StringFormatter(slots=["<|im_start|>user\\n{{content}}<|im_end|>\\n<|im_start|>assistant\\n"]),
    format_assistant=StringFormatter(slots=["{{content}}<|im_end|>\\n"]),
    format_system=StringFormatter(slots=["<|im_start|>system\\n{{content}}<|im_end|>\\n"]),
    format_observation=StringFormatter(slots=["<|im_start|>tool\\n{{content}}<|im_end|>\\n<|im_start|>assistant\\n"]),
    default_system=(
    "你是一个经过良好训练的AI助手,你的名字是Marco-o1.由阿里国际数字商业集团的AI Business创造.\\n## 重要!!!!!\\n"
    "当你回答问题时,你的思考应该在<Thought>内完成,<Output>内输出你的结果。\\n"
    "<Thought>应该尽可能是英文,但是有2个特例,一个是对原文中的引用,另一个是是数学应该使用markdown格式,<Output>内的输出需要遵循用户输入的语言。\\n"
    ),
    stop_words=["<|im_end|>"],
    )

    # copied from chatml template
    register_template(
    name="minicpm_v",
    format_user=StringFormatter(slots=["<|im_start|>user\\n{{content}}<|im_end|>\\n<|im_start|>assistant\\n"]),
    format_assistant=StringFormatter(slots=["{{content}}<|im_end|>\\n"]),
    format_system=StringFormatter(slots=["<|im_start|>system\\n{{content}}<|im_end|>\\n"]),
    stop_words=["<|im_end|>"],
    default_system="You are a helpful assistant.",
    mm_plugin=get_mm_plugin(name="minicpm_v", image_token="<image>", video_token="<video>"),
    )

    # copied from minicpm_v template
    register_template(
    name="minicpm_o",
    format_user=StringFormatter(slots=["<|im_start|>user\\n{{content}}<|im_end|>\\n<|im_start|>assistant\\n"]),
    format_assistant=StringFormatter(slots=["{{content}}<|im_end|>\\n"]),
    format_system=StringFormatter(slots=["<|im_start|>system\\n{{content}}<|im_end|>\\n"]),
    stop_words=["<|im_end|>"],
    default_system="You are Qwen, created by Alibaba Cloud. You are a helpful assistant.",
    mm_plugin=get_mm_plugin(name="minicpm_v", image_token="<image>", video_token="<video>", audio_token="<audio>"),
    )

    # mistral tokenizer v3 tekken
    register_template(
    name="ministral",
    format_user=StringFormatter(slots=["[INST]{{content}}[/INST]"]),
    format_system=StringFormatter(slots=["{{content}}\\n\\n"]),
    format_function=FunctionFormatter(slots=["[TOOL_CALLS]{{content}}", {"eos_token"}], tool_format="mistral"),
    format_observation=StringFormatter(slots=["""[TOOL_RESULTS]{"content": {{content}}}[/TOOL_RESULTS]"""]),
    format_tools=ToolFormatter(tool_format="mistral"),
    format_prefix=EmptyFormatter(slots=[{"bos_token"}]),
    template_class=Llama2Template,
    )

    # mistral tokenizer v3
    register_template(
    name="mistral",
    format_user=StringFormatter(slots=["[INST] {{content}}[/INST]"]),
    format_assistant=StringFormatter(slots=[" {{content}}", {"eos_token"}]),
    format_system=StringFormatter(slots=["{{content}}\\n\\n"]),
    format_function=FunctionFormatter(slots=["[TOOL_CALLS] {{content}}", {"eos_token"}], tool_format="mistral"),
    format_observation=StringFormatter(slots=["""[TOOL_RESULTS] {"content": {{content}}}[/TOOL_RESULTS]"""]),
    format_tools=ToolFormatter(tool_format="mistral"),
    format_prefix=EmptyFormatter(slots=[{"bos_token"}]),
    template_class=Llama2Template,
    )

    # mistral tokenizer v7 tekken (copied from ministral)
    register_template(
    name="mistral_small",
    format_user=StringFormatter(slots=["[INST]{{content}}[/INST]"]),
    format_system=StringFormatter(slots=["[SYSTEM_PROMPT]{{content}}[/SYSTEM_PROMPT]"]),
    format_function=FunctionFormatter(slots=["[TOOL_CALLS]{{content}}", {"eos_token"}], tool_format="mistral"),
    format_observation=StringFormatter(slots=["""[TOOL_RESULTS]{"content": {{content}}}[/TOOL_RESULTS]"""]),
    format_tools=ToolFormatter(tool_format="mistral"),
    format_prefix=EmptyFormatter(slots=[{"bos_token"}]),
    )

    register_template(
    name="olmo",
    format_user=StringFormatter(slots=["<|user|>\\n{{content}}<|assistant|>\\n"]),
    format_prefix=EmptyFormatter(slots=[{"eos_token"}]),
    )

    register_template(
    name="openchat",
    format_user=StringFormatter(slots=["GPT4 Correct User: {{content}}", {"eos_token"}, "GPT4 Correct Assistant:"]),
    format_prefix=EmptyFormatter(slots=[{"bos_token"}]),
    )

    register_template(
    name="openchat-3.6",
    format_user=StringFormatter(
    slots=[
    (
    "<|start_header_id|>GPT4 Correct User<|end_header_id|>\\n\\n{{content}}<|eot_id|>"
    "<|start_header_id|>GPT4 Correct Assistant<|end_header_id|>\\n\\n"
    )
    ]
    ),
    format_prefix=EmptyFormatter(slots=[{"bos_token"}]),
    stop_words=["<|eot_id|>"],
    )

    # copied from chatml template
    register_template(
    name="opencoder",
    format_user=StringFormatter(slots=["<|im_start|>user\\n{{content}}<|im_end|>\\n<|im_start|>assistant\\n"]),
    format_assistant=StringFormatter(slots=["{{content}}<|im_end|>\\n"]),
    format_system=StringFormatter(slots=["<|im_start|>system\\n{{content}}<|im_end|>\\n"]),
    format_observation=StringFormatter(slots=["<|im_start|>tool\\n{{content}}<|im_end|>\\n<|im_start|>assistant\\n"]),
    default_system="You are OpenCoder, created by OpenCoder Team.",
    stop_words=["<|im_end|>"],
    )

    register_template(
    name="orion",
    format_user=StringFormatter(slots=["Human: {{content}}\\n\\nAssistant: ", {"eos_token"}]),
    format_prefix=EmptyFormatter(slots=[{"bos_token"}]),
    )

    # copied from gemma template
    register_template(
    name="paligemma",
    format_user=StringFormatter(slots=["<start_of_turn>user\\n{{content}}<end_of_turn>\\n<start_of_turn>model\\n"]),
    format_assistant=StringFormatter(slots=["{{content}}<end_of_turn>\\n"]),
    format_observation=StringFormatter(
    slots=["<start_of_turn>tool\\n{{content}}<end_of_turn>\\n<start_of_turn>model\\n"]
    ),
    format_prefix=EmptyFormatter(slots=[{"bos_token"}]),
    mm_plugin=get_mm_plugin(name="paligemma", image_token="<image>"),
    )

    register_template(
    name="phi",
    format_user=StringFormatter(slots=["<|user|>\\n{{content}}<|end|>\\n<|assistant|>\\n"]),
    format_assistant=StringFormatter(slots=["{{content}}<|end|>\\n"]),
    format_system=StringFormatter(slots=["<|system|>\\n{{content}}<|end|>\\n"]),
    stop_words=["<|end|>"],
    )

    register_template(
    name="phi_small",
    format_user=StringFormatter(slots=["<|user|>\\n{{content}}<|end|>\\n<|assistant|>\\n"]),
    format_assistant=StringFormatter(slots=["{{content}}<|end|>\\n"]),
    format_system=StringFormatter(slots=["<|system|>\\n{{content}}<|end|>\\n"]),
    format_prefix=EmptyFormatter(slots=[{"<|endoftext|>"}]),
    stop_words=["<|end|>"],
    )

    register_template(
    name="phi4",
    format_user=StringFormatter(
    slots=["<|im_start|>user<|im_sep|>{{content}}<|im_end|><|im_start|>assistant<|im_sep|>"]
    ),
    format_assistant=StringFormatter(slots=["{{content}}<|im_end|>"]),
    format_system=StringFormatter(slots=["<|im_start|>system<|im_sep|>{{content}}<|im_end|>"]),
    stop_words=["<|im_end|>"],
    )

    # copied from ministral template
    register_template(
    name="pixtral",
    format_user=StringFormatter(slots=["[INST]{{content}}[/INST]"]),
    format_system=StringFormatter(slots=["{{content}}\\n\\n"]),
    format_function=FunctionFormatter(slots=["[TOOL_CALLS]{{content}}", {"eos_token"}], tool_format="mistral"),
    format_observation=StringFormatter(slots=["""[TOOL_RESULTS]{"content": {{content}}}[/TOOL_RESULTS]"""]),
    format_tools=ToolFormatter(tool_format="mistral"),
    format_prefix=EmptyFormatter(slots=[{"bos_token"}]),
    mm_plugin=get_mm_plugin(name="pixtral", image_token="[IMG]"),
    template_class=Llama2Template,
    )

    # copied from chatml template
    register_template(
    name="qwen",
    format_user=StringFormatter(slots=["<|im_start|>user\\n{{content}}<|im_end|>\\n<|im_start|>assistant\\n"]),
    format_assistant=StringFormatter(slots=["{{content}}<|im_end|>\\n"]),
    format_system=StringFormatter(slots=["<|im_start|>system\\n{{content}}<|im_end|>\\n"]),
    format_function=FunctionFormatter(slots=["{{content}}<|im_end|>\\n"], tool_format="qwen"),
    format_observation=StringFormatter(
    slots=["<|im_start|>user\\n<tool_response>\\n{{content}}\\n</tool_response><|im_end|>\\n<|im_start|>assistant\\n"]
    ),
    format_tools=ToolFormatter(tool_format="qwen"),
    default_system="You are a helpful assistant.",
    stop_words=["<|im_end|>"],
    )

    # copied from chatml template
    register_template(
    name="qwen2_audio",
    format_user=StringFormatter(slots=["<|im_start|>user\\n{{content}}<|im_end|>\\n<|im_start|>assistant\\n"]),
    format_assistant=StringFormatter(slots=["{{content}}<|im_end|>\\n"]),
    format_system=StringFormatter(slots=["<|im_start|>system\\n{{content}}<|im_end|>\\n"]),
    default_system="You are a helpful assistant.",
    stop_words=["<|im_end|>"],
    mm_plugin=get_mm_plugin(name="qwen2_audio", audio_token="<|AUDIO|>"),
    )

    # copied from qwen template
    register_template(
    name="qwen2_vl",
    format_user=StringFormatter(slots=["<|im_start|>user\\n{{content}}<|im_end|>\\n<|im_start|>assistant\\n"]),
    format_assistant=StringFormatter(slots=["{{content}}<|im_end|>\\n"]),
    format_system=StringFormatter(slots=["<|im_start|>system\\n{{content}}<|im_end|>\\n"]),
    format_function=FunctionFormatter(slots=["{{content}}<|im_end|>\\n"], tool_format="qwen"),
    format_observation=StringFormatter(
    slots=["<|im_start|>user\\n<tool_response>\\n{{content}}\\n</tool_response><|im_end|>\\n<|im_start|>assistant\\n"]
    ),
    format_tools=ToolFormatter(tool_format="qwen"),
    default_system="You are a helpful assistant.",
    stop_words=["<|im_end|>"],
    mm_plugin=get_mm_plugin(name="qwen2_vl", image_token="<|image_pad|>", video_token="<|video_pad|>"),
    )

    register_template(
    name="sailor",
    format_user=StringFormatter(slots=["<|im_start|>question\\n{{content}}<|im_end|>\\n<|im_start|>answer\\n"]),
    format_assistant=StringFormatter(slots=["{{content}}<|im_end|>\\n"]),
    format_system=StringFormatter(slots=["<|im_start|>system\\n{{content}}<|im_end|>\\n"]),
    default_system=(
    "You are an AI assistant named Sailor created by Sea AI Lab. "
    "Your answer should be friendly, unbiased, faithful, informative and detailed."
    ),
    stop_words=["<|im_end|>"],
    )

    # copied from llama3 template
    register_template(
    name="skywork_o1",
    format_user=StringFormatter(
    slots=[
    (
    "<|start_header_id|>user<|end_header_id|>\\n\\n{{content}}<|eot_id|>"
    "<|start_header_id|>assistant<|end_header_id|>\\n\\n"
    )
    ]
    ),
    format_assistant=StringFormatter(slots=["{{content}}<|eot_id|>"]),
    format_system=StringFormatter(slots=["<|start_header_id|>system<|end_header_id|>\\n\\n{{content}}<|eot_id|>"]),
    format_function=FunctionFormatter(slots=["{{content}}<|eot_id|>"], tool_format="llama3"),
    format_observation=StringFormatter(
    slots=[
    (
    "<|start_header_id|>ipython<|end_header_id|>\\n\\n{{content}}<|eot_id|>"
    "<|start_header_id|>assistant<|end_header_id|>\\n\\n"
    )
    ]
    ),
    format_tools=ToolFormatter(tool_format="llama3"),
    format_prefix=EmptyFormatter(slots=[{"bos_token"}]),
    default_system=(
    "You are Skywork-o1, a thinking model developed by Skywork AI, specializing in solving complex problems "
    "involving mathematics, coding, and logical reasoning through deep thought. When faced with a user's request, "
    "you first engage in a lengthy and in-depth thinking process to explore possible solutions to the problem. "
    "After completing your thoughts, you then provide a detailed explanation of the solution process "
    "in your response."
    ),
    stop_words=["<|eot_id|>", "<|eom_id|>"],
    )

    register_template(
    name="solar",
    format_user=StringFormatter(slots=["### User:\\n{{content}}\\n\\n### Assistant:\\n"]),
    format_system=StringFormatter(slots=["### System:\\n{{content}}\\n\\n"]),
    efficient_eos=True,
    )

    register_template(
    name="starchat",
    format_user=StringFormatter(slots=["<|user|>\\n{{content}}<|end|>\\n<|assistant|>"]),
    format_assistant=StringFormatter(slots=["{{content}}<|end|>\\n"]),
    format_system=StringFormatter(slots=["<|system|>\\n{{content}}<|end|>\\n"]),
    stop_words=["<|end|>"],
    )

    register_template(
    name="telechat",
    format_user=StringFormatter(slots=["<_user>{{content}}<_bot>"]),
    format_system=StringFormatter(slots=["<_system>{{content}}<_end>"]),
    )

    register_template(
    name="telechat2",
    format_user=StringFormatter(slots=["<_user>{{content}}<_bot>"]),
    format_system=StringFormatter(slots=["<_system>{{content}}"]),
    default_system=(
    "你是中国电信星辰语义大模型,英文名是TeleChat,你是由中电信人工智能科技有限公司和中国电信人工智能研究院(TeleAI)研发的人工智能助手。"
    ),
    )

    register_template(
    name="vicuna",
    format_user=StringFormatter(slots=["USER: {{content}} ASSISTANT:"]),
    default_system=(
    "A chat between a curious user and an artificial intelligence assistant. "
    "The assistant gives helpful, detailed, and polite answers to the user's questions."
    ),
    replace_jinja_template=True,
    )

    register_template(
    name="video_llava",
    format_user=StringFormatter(slots=["USER: {{content}} ASSISTANT:"]),
    default_system=(
    "A chat between a curious user and an artificial intelligence assistant. "
    "The assistant gives helpful, detailed, and polite answers to the user's questions."
    ),
    mm_plugin=get_mm_plugin(name="video_llava", image_token="<image>", video_token="<video>"),
    )

    register_template(
    name="xuanyuan",
    format_user=StringFormatter(slots=["Human: {{content}} Assistant:"]),
    default_system=(
    "以下是用户和人工智能助手之间的对话。用户以Human开头,人工智能助手以Assistant开头,"
    "会对人类提出的问题给出有帮助、高质量、详细和礼貌的回答,并且总是拒绝参与与不道德、"
    "不安全、有争议、政治敏感等相关的话题、问题和指示。\\n"
    ),
    )

    register_template(
    name="xverse",
    format_user=StringFormatter(slots=["Human: {{content}}\\n\\nAssistant: "]),
    )

    register_template(
    name="yayi",
    format_user=StringFormatter(slots=[{"token": "<|Human|>"}, ":\\n{{content}}\\n\\n", {"token": "<|YaYi|>"}, ":"]),
    format_assistant=StringFormatter(slots=["{{content}}\\n\\n"]),
    format_system=StringFormatter(slots=[{"token": "<|System|>"}, ":\\n{{content}}\\n\\n"]),
    default_system=(
    "You are a helpful, respectful and honest assistant named YaYi "
    "developed by Beijing Wenge Technology Co.,Ltd. "
    "Always answer as helpfully as possible, while being safe. "
    "Your answers should not include any harmful, unethical, "
    "racist, sexist, toxic, dangerous, or illegal content. "
    "Please ensure that your responses are socially unbiased and positive in nature.\\n\\n"
    "If a question does not make any sense, or is not factually coherent, "
    "explain why instead of answering something not correct. "
    "If you don't know the answer to a question, please don't share false information."
    ),
    stop_words=["<|End|>"],
    )

    # copied from chatml template
    register_template(
    name="yi",
    format_user=StringFormatter(slots=["<|im_start|>user\\n{{content}}<|im_end|>\\n<|im_start|>assistant\\n"]),
    format_assistant=StringFormatter(slots=["{{content}}<|im_end|>\\n"]),
    format_system=StringFormatter(slots=["<|im_start|>system\\n{{content}}<|im_end|>\\n"]),
    stop_words=["<|im_end|>"],
    )

    register_template(
    name="yi_vl",
    format_user=StringFormatter(slots=["### Human: {{content}}\\n### Assistant:"]),
    format_assistant=StringFormatter(slots=["{{content}}\\n"]),
    default_system=(
    "This is a chat between an inquisitive human and an AI assistant. "
    "Assume the role of the AI assistant. Read all the images carefully, "
    "and respond to the human's questions with informative, helpful, detailed and polite answers. "
    "这是一个好奇的人类和一个人工智能助手之间的对话。假设你扮演这个AI助手的角色。"
    "仔细阅读所有的图像,并对人类的问题做出信息丰富、有帮助、详细的和礼貌的回答。\\n\\n"
    ),
    stop_words=["###"],
    efficient_eos=True,
    mm_plugin=get_mm_plugin(name="llava", image_token="<image>"),
    )

    register_template(
    name="yuan",
    format_user=StringFormatter(slots=["{{content}}", {"token": "<sep>"}]),
    format_assistant=StringFormatter(slots=["{{content}}<eod>\\n"]),
    stop_words=["<eod>"],
    )

    register_template(
    name="zephyr",
    format_user=StringFormatter(slots=["<|user|>\\n{{content}}", {"eos_token"}, "<|assistant|>\\n"]),
    format_system=StringFormatter(slots=["<|system|>\\n{{content}}", {"eos_token"}]),
    default_system="You are Zephyr, a helpful assistant.",
    )

    register_template(
    name="ziya",
    format_user=StringFormatter(slots=["<human>:{{content}}\\n<bot>:"]),
    format_assistant=StringFormatter(slots=["{{content}}\\n"]),
    )

    赞(0)
    未经允许不得转载:网硕互联帮助中心 » 开源模型应用落地-DeepSeek-R1-Distill-Qwen-7B-LoRA微调-LLaMA-Factory-单机单卡-V100(一)
    分享到: 更多 (0)

    评论 抢沙发

    评论前必须登录!