1.图像采集
参考《从摄像头采集图像》:https://blog.csdn.net/2301_80049844/article/details/157290607
2.数据标注
参考《数据标注.Labelme》:https://blog.csdn.net/2301_80049844/article/details/157290870
3.格式转换
参考《labelme转yolov8数据格式》:https://blog.csdn.net/2301_80049844/article/details/157291089
4.Fine-tuning
4.1.命令行参数解析
# -*- coding:utf-8 -*-
import argparse
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument(
"–yolo_pt",
required=True,
help="yolo模型文件")
parser.add_argument(
"–coco_yaml",
required=True,
help="coco.yaml文件")
parser.add_argument(
"–train_output",
required=True,
help="训练输目录")
return parser.parse_args()
4.2.Fine-tuning
# -*- coding:utf-8 -*-
import os
import ultralytics
from ultralytics import YOLO
from setting import parse_arguments
os.environ['ULTRALYTICS_OFFLINE'] = 'True'
def train():
args = parse_arguments()
yolo_pt = args.yolo_pt
coco_yaml= args.coco_yaml
train_output = args.train_output
model = YOLO(yolo_pt)
results = model.train(data=coco_yaml,
epochs=200,
batch=4,
device='0',
project=train_output,
name='yolov8_retrain',
exist_ok=False, # True,
amp=False,
)
# 训练完成后,手动指定 val 的保存路径
metrics = model.val(project=train_output, name='yolov8_retrain_val')
if __name__ == "__main__":
train()
网硕互联帮助中心




评论前必须登录!
注册