题目列表
46. 全排列 中等难度 leetcode链接
78. 子集 中等难度 leetcode链接
17. 电话号码的数字组合 中等难度 leetcode链接
39. 组合总和 中等难度 leetcode链接
22. 括号生成 中等难度 leetcode链接
79. 单词搜索 中等难度 leetcode链接
131. 分割回文串 中等难度 leetcode链接
51. N皇后 中等难度 leetcode链接
题目
(1)全排列
题目
给定一个不含重复数字的数组 nums ,返回其 所有可能的全排列 。你可以 按任意顺序 返回答案。
示例 1:
输入:nums = [1,2,3] 输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]
示例 2:
输入:nums = [0,1] 输出:[[0,1],[1,0]]
示例 3:
输入:nums = [1] 输出:[[1]]
提示:
-
1 <= nums.length <= 6
-
-10 <= nums[i] <= 10
-
nums 中的所有整数 互不相同
思路
class Solution:
def permute(self, nums: List[int]) -> List[List[int]]:
result = []
self.backtracking(nums, [], [False] * len(nums), result)
return result
def backtracking(self, nums, path, used, result):
if len(path) == len(nums):
result.append(path[:])
return
for i in range(len(nums)):
if used[i]:
continue
used[i] = True
path.append(nums[i])
self.backtracking(nums, path, used, result)
path.pop()
used[i] = False
(2)子集
题目
给你一个整数数组nums,数组中的元素互不相同 。返回该数组所有可能子集(幂集)。
解集 不能 包含重复的子集。你可以按 任意顺序 返回解集。
示例 1:
输入:nums = [1,2,3] 输出:[[],[1],[2],[1,2],[3],[1,3],[2,3],[1,2,3]]
示例 2:
输入:nums = [0] 输出:[[],[0]]
提示:
-
1 <= nums.length <= 10
-
-10 <= nums[i] <= 10
-
nums 中的所有元素 互不相同
思路
class Solution:
def subsets(self, nums: List[int]) -> List[List[int]]:
result = []
path = []
self.backtracking(nums, 0, path, result)
return result
def backtracking(self, nums, startIndex, path, result):
result.append(path[:]) # 收集子集,要放在终止添加的上面,否则会漏掉自己
# if startIndex >= len(nums): # 终止条件可以不加
# return
for i in range(startIndex, len(nums)):
path.append(nums[i])
self.backtracking(nums, i + 1, path, result)
path.pop()
(3)电话号码的数字组合
题目
给定一个仅包含数字 2-9 的字符串,返回所有它能表示的字母组合。答案可以按 任意顺序 返回。
给出数字到字母的映射如下(与电话按键相同)。注意 1 不对应任何字母。
示例 1:
输入:digits = "23" 输出:["ad","ae","af","bd","be","bf","cd","ce","cf"]
示例 2:
输入:digits = "" 输出:[]
示例 3:
输入:digits = "2" 输出:["a","b","c"]
提示:
-
0 <= digits.length <= 4
-
digits[i] 是范围 ['2', '9'] 的一个数字。
思路
class Solution:
def __init__(self):
self.letterMap = [
"", # 0
"", # 1
"abc", # 2
"def", # 3
"ghi", # 4
"jkl", # 5
"mno", # 6
"pqrs", # 7
"tuv", # 8
"wxyz" # 9
]
self.result = []
self.s = ""
def backtracking(self, digits, index):
if index == len(digits):
self.result.append(self.s)
return
digit = int(digits[index]) # 将索引处的数字转换为整数
letters = self.letterMap[digit] # 获取对应的字符集
for i in range(len(letters)):
self.s += letters[i] # 处理字符
self.backtracking(digits, index + 1) # 递归调用,注意索引加1,处理下一个数字
self.s = self.s[:-1] # 回溯,删除最后添加的字符
def letterCombinations(self, digits: str) -> List[str]:
if len(digits) == 0:
return self.result
self.backtracking(digits, 0)
return self.result
(4)组合总和
题目
给你一个 无重复元素 的整数数组 candidates 和一个目标整数 target ,找出 candidates 中可以使数字和为目标数 target 的 所有 不同组合 ,并以列表形式返回。你可以按 任意顺序 返回这些组合。
candidates 中的 同一个 数字可以 无限制重复被选取 。如果至少一个数字的被选数量不同,则两种组合是不同的。
对于给定的输入,保证和为 target 的不同组合数少于 150 个。
示例 1:
输入:candidates = [2,3,6,7], target = 7输出:[[2,2,3],[7]] 解释: 2 和 3 可以形成一组候选,2 + 2 + 3 = 7 。注意 2 可以使用多次。 7 也是一个候选, 7 = 7 。 仅有这两种组合。
示例 2:
输入: candidates = [2,3,5], target = 8 输出: [[2,2,2,2],[2,3,3],[3,5]]
示例 3:
输入: candidates = [2], target = 1 输出: []
提示:
-
1 <= candidates.length <= 30
-
2 <= candidates[i] <= 40
-
candidates 的所有元素 互不相同
-
1 <= target <= 40
思路
class Solution:
def backtracking(self, candidates, target, total, startIndex, path, result):
if total == target:
result.append(path[:])
return
for i in range(startIndex, len(candidates)):
if total + candidates[i] > target:
break
total += candidates[i]
path.append(candidates[i])
self.backtracking(candidates, target, total, i, path, result)
total -= candidates[i]
path.pop()
def combinationSum(self, candidates: List[int], target: int) -> List[List[int]]:
result = []
candidates.sort() # 需要排序
self.backtracking(candidates, target, 0, 0, [], result)
return result
(5)括号生成
题目
数字 n 代表生成括号的对数,请你设计一个函数,用于能够生成所有可能的并且 有效的 括号组合。
示例 1:
输入:n = 3 输出:["((()))","(()())","(())()","()(())","()()()"]
示例 2:
输入:n = 1 输出:["()"]
提示:
-
1 <= n <= 8
思路
class Solution:
def generateParenthesis(self, n: int) -> List[str]:
if n == 0:
return ['']
ans = []
for c in range(n):
for left in self.generateParenthesis(c):
for right in self.generateParenthesis(n-1-c):
ans.append('({}){}'.format(left, right))
return ans
#题解:https://leetcode.cn/problems/generate-parentheses/solutions/192912/gua-hao-sheng-cheng-by-leetcode-solution/
(6)单词搜索
题目
给定一个 m x n 二维字符网格 board 和一个字符串单词 word 。如果 word 存在于网格中,返回 true ;否则,返回 false 。
单词必须按照字母顺序,通过相邻的单元格内的字母构成,其中“相邻”单元格是那些水平相邻或垂直相邻的单元格。同一个单元格内的字母不允许被重复使用。
示例 1:
输入:board = [["A","B","C","E"],["S","F","C","S"],["A","D","E","E"]], word = "ABCCED" 输出:true
示例 2:
输入:board = [["A","B","C","E"],["S","F","C","S"],["A","D","E","E"]], word = "SEE" 输出:true
示例 3:
输入:board = [["A","B","C","E"],["S","F","C","S"],["A","D","E","E"]], word = "ABCB" 输出:false
提示:
-
m == board.length
-
n = board[i].length
-
1 <= m, n <= 6
-
1 <= word.length <= 15
-
board 和 word 仅由大小写英文字母组成
思路
class Solution:
def exist(self, board: List[List[str]], word: str) -> bool:
def dfs(i, j, k, row, col, list_set, board, path):
if k == len(word):
return True
for x, y in list_set:
word_x = i + x
word_y = j + y
if 0<= word_x<row and 0<=word_y<col and board[word_x][word_y] == word[k] and (word_x, word_y) not in path:
path.add((word_x, word_y))
if dfs(word_x, word_y, k+1, row, col, list_set, board, path):
return True
path.remove((word_x, word_y))
row = len(board)
col = len(board[0])
list_set = [(-1, 0), (1, 0), (0, -1), (0, 1)]
k = 1
for i in range(row):
for j in range(col):
if board[i][j] == word[0] and dfs(i, j, k, row, col, list_set, board, {(i, j)}):
return True
return False
(7)分割回文串
题目
给你一个字符串 s,请你将 s 分割成一些 子串,使每个子串都是 回文串 。返回 s 所有可能的分割方案。
示例 1:
输入:s = "aab" 输出:[["a","a","b"],["aa","b"]]
示例 2:
输入:s = "a" 输出:[["a"]]
提示:
-
1 <= s.length <= 16
-
s 仅由小写英文字母组成
思路
class Solution:
def partition(self, s: str) -> List[List[str]]:
'''
递归用于纵向遍历
for循环用于横向遍历
当切割线迭代至字符串末尾,说明找到一种方法
类似组合问题,为了不重复切割同一位置,需要start_index来做标记下一轮递归的起始位置(切割线)
'''
result = []
self.backtracking(s, 0, [], result)
return result
def backtracking(self, s, start_index, path, result ):
# Base Case
if start_index == len(s):
result.append(path[:])
return
# 单层递归逻辑
for i in range(start_index, len(s)):
# 此次比其他组合题目多了一步判断:
# 判断被截取的这一段子串([start_index, i])是否为回文串
if self.is_palindrome(s, start_index, i):
path.append(s[start_index:i+1])
self.backtracking(s, i+1, path, result) # 递归纵向遍历:从下一处进行切割,判断其余是否仍为回文串
path.pop() # 回溯
def is_palindrome(self, s: str, start: int, end: int) -> bool:
i: int = start
j: int = end
while i < j:
if s[i] != s[j]:
return False
i += 1
j -= 1
return True
(8)N皇后
题目
按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。
n 皇后问题 研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。
给你一个整数 n ,返回所有不同的 n 皇后问题 的解决方案。
每一种解法包含一个不同的 n 皇后问题 的棋子放置方案,该方案中 'Q' 和 '.' 分别代表了皇后和空位。
示例 1:
输入:n = 4 输出:[[".Q..","…Q","Q…","..Q."],["..Q.","Q…","…Q",".Q.."]] 解释:如上图所示,4 皇后问题存在两个不同的解法。
示例 2:
输入:n = 1 输出:[["Q"]]
提示:
-
1 <= n <= 9
思路
class Solution:
def solveNQueens(self, n: int) -> List[List[str]]:
def generateBoard():
board = list()
for i in range(n):
row[queens[i]] = "Q"
board.append("".join(row))
row[queens[i]] = "."
return board
def backtrack(row: int):
if row == n:
board = generateBoard()
solutions.append(board)
else:
for i in range(n):
if i in columns or row – i in diagonal1 or row + i in diagonal2:
continue
queens[row] = i
columns.add(i)
diagonal1.add(row – i)
diagonal2.add(row + i)
backtrack(row + 1)
columns.remove(i)
diagonal1.remove(row – i)
diagonal2.remove(row + i)
solutions = list()
queens = [-1] * n
columns = set()
diagonal1 = set()
diagonal2 = set()
row = ["."] * n
backtrack(0)
return solutions
#链接:https://leetcode.cn/problems/n-queens/solutions/398929/nhuang-hou-by-leetcode-solution/
# 时间复杂度:O(N!),其中 N 是皇后数量。
# 空间复杂度:O(N),其中 N 是皇后数量。空间复杂度主要取决于递归调用层数、记录每行放置的皇后的列下标的数组以及三个集合,递归调用层数不会超过 N,数组的长度为 N,每个集合的元素个数都不会超过 N。
结尾
亲爱的读者朋友:感谢您在繁忙中驻足阅读本期内容!您的到来是对我们最大的支持❤️
正如古语所言:"当局者迷,旁观者清"。您独到的见解与客观评价,恰似一盏明灯💡,能帮助我们照亮内容盲区,让未来的创作更加贴近您的需求。
若此文给您带来启发或收获,不妨通过以下方式为彼此搭建一座桥梁: ✨ 点击右上角【点赞】图标,让好内容被更多人看见 ✨ 滑动屏幕【收藏】本篇,便于随时查阅回味 ✨ 在评论区留下您的真知灼见,让我们共同碰撞思维的火花
我始终秉持匠心精神,以键盘为犁铧深耕知识沃土💻,用每一次敲击传递专业价值,不断优化内容呈现形式,力求为您打造沉浸式的阅读盛宴📚。
有任何疑问或建议?评论区就是我们的连心桥!您的每一条留言我都将认真研读,并在24小时内回复解答📝。
愿我们携手同行,在知识的雨林中茁壮成长🌳,共享思想绽放的甘甜果实。下期相遇时,期待看到您智慧的评论与闪亮的点赞身影✨!
自我介绍:一线互联网大厂资深算法研发(工作6年+),4年以上招聘面试官经验(一二面面试官,面试候选人400+),深谙岗位专业知识、技能雷达图,已累计辅导15+求职者顺利入职大中型互联网公司。熟练掌握大模型、NLP、搜索、推荐、数据挖掘算法和优化,提供面试辅导、专业知识入门到进阶辅导等定制化需求等服务,助力您顺利完成学习和求职之旅(有需要者可私信联系)
友友们,自己的知乎账号为“快乐星球”,定期更新技术文章,敬请关注!
评论前必须登录!
注册