云计算百科
云计算领域专业知识百科平台

Linux内核IPv4多播路由深度解析:从数据结构到高效转发

多播路由是网络通信的核心技术之一,Linux内核通过精密的多层设计实现了高性能的IPv4多播路由功能。本文将深入剖析其核心实现机制,揭示其高效运转的秘密。


一、核心数据结构:路由系统的基石

1. 多播路由表(struct mr_table)

struct mr_table {
struct list_head list;
struct rhltable mfc_hash; // MFC哈希表
struct list_head mfc_cache_list;
struct list_head mfc_unres_queue; // 未解析队列

struct vif_device vif_table[MAXVIFS]; // 虚拟接口表
int maxvif; // 当前最大VIF索引

atomic_t cache_resolve_queue_len; // 未解析队列长度
struct timer_list ipmr_expire_timer; // 超时定时器
};

路由表通过双结构存储策略实现高效检索:哈希表用于快速查找,链表用于顺序遍历。未解析队列则临时存放等待路由决策的数据包。

2. 虚拟接口(struct vif_device)

struct vif_device {
struct net_device *dev; // 关联的网络设备
unsigned long bytes_in, bytes_out; // 流量统计
unsigned long pkt_in, pkt_out;
__be32 local, remote; // 隧道端点地址
int flags; // 类型标记
};

支持三种接口类型:

  • 物理接口:直接绑定网络设备

  • 隧道接口(VIFF_TUNNEL):用于跨网络转发

  • 注册接口(VIFF_REGISTER):与用户态守护进程通信

3. 多播转发缓存(struct mfc_cache)

struct mfc_cache {
struct mfc_common _c;
__be32 mfc_origin; // 源地址
__be32 mfc_mcastgrp; // 组地址
struct mfc_cache_cmp_arg cmparg; // 哈希比较参数
};

关键字段res.ttls[MAXVIFS]存储每个出口的TTL阈值,实现精细化的出口控制。


二、数据包转发流程:速度与精确的平衡

转发路径(ip_mr_forward)

graph TD
A[数据包到达] –> B{匹配MFC?}
B –>|是| C[校验输入接口]
B –>|否| D[加入未解析队列]
C –> E[遍历所有出口]
E –> F{TTL有效?}
F –>|是| G[克隆并发送]
F –>|否| H[跳过接口]
G –> I[更新统计信息]

关键优化点:
  • 快速克隆机制:对每个有效出口只克隆包头,避免数据复制

    if (psend != -1) {
    struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
    ipmr_queue_xmit(…, skb2, …);
    }

  • 智能TTL管理:跳过TTL不足的接口,减少无效操作

  • 统计原子更新:无锁更新计数器确保高性能


  • 三、控制平面:动态路由管理

    1. MFC生命周期管理
    • 动态学习:通过PIM/IGMP消息自动创建条目

    • 静态配置:Netlink命令手动添加

      ip mroute add 192.168.1.100 224.0.0.1 dev eth0

    • 超时清理:10秒未解析自动丢弃(可配置)

      #define MFC_UNRES_TIMEOUT (10*HZ)

    2. 用户态协同机制

    内核通过原始套接字与mrouted/pimd交互:

    static void igmpmsg_netlink_event(struct mr_table *mrt, struct sk_buff *pkt)
    {
    // 构造IGMPMSG_NOCACHE消息
    // 通过NETLINK发送到用户态
    }

    实现实时路由更新和未解析包通知。


    四、协议支持:灵活的处理框架

    1. PIM协议处理

    // PIMv2处理函数
    static int pim_rcv(struct sk_buff *skb)
    {
    if (pim->type != ((PIM_VERSION<<4)|PIM_TYPE_REGISTER))
    goto drop;
    // 验证校验和
    // 转发到注册接口
    }

    支持PIM-SM/PIM-DM关键特性,包括注册停止机制。

    2. IGMP代理

    static int ipmr_cache_report(struct mr_table *mrt,
    struct sk_buff *pkt, vifi_t vifi, int assert)
    {
    // 构造IGMPMSG_WHOLEPKT消息
    // 发送到用户态套接字
    }

    实现组播组成员关系的跨网络传播。


    五、创新设计:性能与扩展性

  • 多表支持(CONFIG_IP_MROUTE_MULTIPLE_TABLES)

    struct mr_table *ipmr_new_table(struct net *net, u32 id)
    {
    // 创建独立路由表
    }

    支持VRF场景,实现网络隔离。

  • RCU+哈希表检索

    struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
    __be32 origin, __be32 mcastgrp)
    {
    // RCU保护的哈希查找
    }

    实现百万级路由条目下的微秒级检索。

  • 动态定时器管理
    仅当存在未解析条目时激活定时器,减少空转开销。


  • 六、实战洞察:定位多播问题的关键点

  • 查看路由表

    cat /proc/net/ip_mr_cache
    # 输出示例:
    # Group Origin Iif Pkts Bytes Wrong Oifs
    # E0000001 C0A80101 2 104 8576 0 1:3

    关注"Wrong Oifs"计数,高数值表明接口配置错误。

  • 监控虚拟接口

    cat /proc/net/ip_mr_vif
    # 输出示例:
    # Interface BytesIn PktsIn BytesOut PktsOut Flags
    # vif0 15MB 1200 12MB 900 VIFF_TUNNEL

    异常字节数指示路由环路或配置错误。

  • 动态调试
    启用内核调试选项:

    echo 1 > /proc/sys/net/ipv4/route/mcast_debug


  • 结语

    Linux的IPv4多播路由通过分层架构和动态管理机制,在复杂网络环境中实现了高效稳定的数据分发。其核心设计思想包括:

  • 控制与转发分离:用户态协议处理+内核态快速转发

  • 时间空间平衡:哈希表+链表的混合存储结构

  • 惰性计算:按需激活处理流程

  • 这些设计使得Linux成为从数据中心到电信网络的多播解决方案基石,为5G网络、IPTV等场景提供了关键基础设施支持。

    /*
    *IP multicast routing support for mrouted 3.6/3.8
    *
    *(c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
    * Linux Consultancy and Custom Driver Development
    *
    *This program is free software; you can redistribute it and/or
    *modify it under the terms of the GNU General Public License
    *as published by the Free Software Foundation; either version
    *2 of the License, or (at your option) any later version.
    *
    *Fixes:
    *Michael Chastain:Incorrect size of copying.
    *Alan Cox:Added the cache manager code
    *Alan Cox:Fixed the clone/copy bug and device race.
    *Mike McLagan:Routing by source
    *Malcolm Beattie:Buffer handling fixes.
    *Alexey Kuznetsov:Double buffer free and other fixes.
    *SVR Anand:Fixed several multicast bugs and problems.
    *Alexey Kuznetsov:Status, optimisations and more.
    *Brad Parker:Better behaviour on mrouted upcall
    *overflow.
    * Carlos Picoto : PIMv1 Support
    *Pavlin Ivanov Radoslavov:PIMv2 Registers must checksum only PIM header
    *Relax this requirement to work with older peers.
    *
    */

    #include <linux/uaccess.h>
    #include <linux/types.h>
    #include <linux/cache.h>
    #include <linux/capability.h>
    #include <linux/errno.h>
    #include <linux/mm.h>
    #include <linux/kernel.h>
    #include <linux/fcntl.h>
    #include <linux/stat.h>
    #include <linux/socket.h>
    #include <linux/in.h>
    #include <linux/inet.h>
    #include <linux/netdevice.h>
    #include <linux/inetdevice.h>
    #include <linux/igmp.h>
    #include <linux/proc_fs.h>
    #include <linux/seq_file.h>
    #include <linux/mroute.h>
    #include <linux/init.h>
    #include <linux/if_ether.h>
    #include <linux/slab.h>
    #include <net/net_namespace.h>
    #include <net/ip.h>
    #include <net/protocol.h>
    #include <linux/skbuff.h>
    #include <net/route.h>
    #include <net/icmp.h>
    #include <net/udp.h>
    #include <net/raw.h>
    #include <linux/notifier.h>
    #include <linux/if_arp.h>
    #include <linux/netfilter_ipv4.h>
    #include <linux/compat.h>
    #include <linux/export.h>
    #include <linux/rhashtable.h>
    #include <net/ip_tunnels.h>
    #include <net/checksum.h>
    #include <net/netlink.h>
    #include <net/fib_rules.h>
    #include <linux/netconf.h>
    #include <net/nexthop.h>
    #include <net/switchdev.h>

    #include <linux/nospec.h>

    struct ipmr_rule {
    struct fib_rulecommon;
    };

    struct ipmr_result {
    struct mr_table*mrt;
    };

    /* Big lock, protecting vif table, mrt cache and mroute socket state.
    * Note that the changes are semaphored via rtnl_lock.
    */

    static DEFINE_RWLOCK(mrt_lock);

    /* Multicast router control variables */

    /* Special spinlock for queue of unresolved entries */
    static DEFINE_SPINLOCK(mfc_unres_lock);

    /* We return to original Alan's scheme. Hash table of resolved
    * entries is changed only in process context and protected
    * with weak lock mrt_lock. Queue of unresolved entries is protected
    * with strong spinlock mfc_unres_lock.
    *
    * In this case data path is free of exclusive locks at all.
    */

    static struct kmem_cache *mrt_cachep __ro_after_init;

    static struct mr_table *ipmr_new_table(struct net *net, u32 id);
    static void ipmr_free_table(struct mr_table *mrt);

    static void ip_mr_forward(struct net *net, struct mr_table *mrt,
    struct net_device *dev, struct sk_buff *skb,
    struct mfc_cache *cache, int local);
    static int ipmr_cache_report(struct mr_table *mrt,
    struct sk_buff *pkt, vifi_t vifi, int assert);
    static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
    int cmd);
    static void igmpmsg_netlink_event(struct mr_table *mrt, struct sk_buff *pkt);
    static void mroute_clean_tables(struct mr_table *mrt, bool all);
    static void ipmr_expire_process(struct timer_list *t);

    #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
    #define ipmr_for_each_table(mrt, net) \\
    list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)

    static struct mr_table *ipmr_mr_table_iter(struct net *net,
    struct mr_table *mrt)
    {
    struct mr_table *ret;

    if (!mrt)
    ret = list_entry_rcu(net->ipv4.mr_tables.next,
    struct mr_table, list);
    else
    ret = list_entry_rcu(mrt->list.next,
    struct mr_table, list);

    if (&ret->list == &net->ipv4.mr_tables)
    return NULL;
    return ret;
    }

    static struct mr_table *ipmr_get_table(struct net *net, u32 id)
    {
    struct mr_table *mrt;

    ipmr_for_each_table(mrt, net) {
    if (mrt->id == id)
    return mrt;
    }
    return NULL;
    }

    static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
    struct mr_table **mrt)
    {
    int err;
    struct ipmr_result res;
    struct fib_lookup_arg arg = {
    .result = &res,
    .flags = FIB_LOOKUP_NOREF,
    };

    /* update flow if oif or iif point to device enslaved to l3mdev */
    l3mdev_update_flow(net, flowi4_to_flowi(flp4));

    err = fib_rules_lookup(net->ipv4.mr_rules_ops,
    flowi4_to_flowi(flp4), 0, &arg);
    if (err < 0)
    return err;
    *mrt = res.mrt;
    return 0;
    }

    static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
    int flags, struct fib_lookup_arg *arg)
    {
    struct ipmr_result *res = arg->result;
    struct mr_table *mrt;

    switch (rule->action) {
    case FR_ACT_TO_TBL:
    break;
    case FR_ACT_UNREACHABLE:
    return -ENETUNREACH;
    case FR_ACT_PROHIBIT:
    return -EACCES;
    case FR_ACT_BLACKHOLE:
    default:
    return -EINVAL;
    }

    arg->table = fib_rule_get_table(rule, arg);

    mrt = ipmr_get_table(rule->fr_net, arg->table);
    if (!mrt)
    return -EAGAIN;
    res->mrt = mrt;
    return 0;
    }

    static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
    {
    return 1;
    }

    static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
    FRA_GENERIC_POLICY,
    };

    static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
    struct fib_rule_hdr *frh, struct nlattr **tb,
    struct netlink_ext_ack *extack)
    {
    return 0;
    }

    static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
    struct nlattr **tb)
    {
    return 1;
    }

    static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
    struct fib_rule_hdr *frh)
    {
    frh->dst_len = 0;
    frh->src_len = 0;
    frh->tos = 0;
    return 0;
    }

    static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
    .family= RTNL_FAMILY_IPMR,
    .rule_size= sizeof(struct ipmr_rule),
    .addr_size= sizeof(u32),
    .action= ipmr_rule_action,
    .match= ipmr_rule_match,
    .configure= ipmr_rule_configure,
    .compare= ipmr_rule_compare,
    .fill= ipmr_rule_fill,
    .nlgroup= RTNLGRP_IPV4_RULE,
    .policy= ipmr_rule_policy,
    .owner= THIS_MODULE,
    };

    static int __net_init ipmr_rules_init(struct net *net)
    {
    struct fib_rules_ops *ops;
    struct mr_table *mrt;
    int err;

    ops = fib_rules_register(&ipmr_rules_ops_template, net);
    if (IS_ERR(ops))
    return PTR_ERR(ops);

    INIT_LIST_HEAD(&net->ipv4.mr_tables);

    mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
    if (IS_ERR(mrt)) {
    err = PTR_ERR(mrt);
    goto err1;
    }

    err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
    if (err < 0)
    goto err2;

    net->ipv4.mr_rules_ops = ops;
    return 0;

    err2:
    ipmr_free_table(mrt);
    err1:
    fib_rules_unregister(ops);
    return err;
    }

    static void __net_exit ipmr_rules_exit(struct net *net)
    {
    struct mr_table *mrt, *next;

    rtnl_lock();
    list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
    list_del(&mrt->list);
    ipmr_free_table(mrt);
    }
    fib_rules_unregister(net->ipv4.mr_rules_ops);
    rtnl_unlock();
    }

    static int ipmr_rules_dump(struct net *net, struct notifier_block *nb)
    {
    return fib_rules_dump(net, nb, RTNL_FAMILY_IPMR);
    }

    static unsigned int ipmr_rules_seq_read(struct net *net)
    {
    return fib_rules_seq_read(net, RTNL_FAMILY_IPMR);
    }

    bool ipmr_rule_default(const struct fib_rule *rule)
    {
    return fib_rule_matchall(rule) && rule->table == RT_TABLE_DEFAULT;
    }
    EXPORT_SYMBOL(ipmr_rule_default);
    #else
    #define ipmr_for_each_table(mrt, net) \\
    for (mrt = net->ipv4.mrt; mrt; mrt = NULL)

    static struct mr_table *ipmr_mr_table_iter(struct net *net,
    struct mr_table *mrt)
    {
    if (!mrt)
    return net->ipv4.mrt;
    return NULL;
    }

    static struct mr_table *ipmr_get_table(struct net *net, u32 id)
    {
    return net->ipv4.mrt;
    }

    static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
    struct mr_table **mrt)
    {
    *mrt = net->ipv4.mrt;
    return 0;
    }

    static int __net_init ipmr_rules_init(struct net *net)
    {
    struct mr_table *mrt;

    mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
    if (IS_ERR(mrt))
    return PTR_ERR(mrt);
    net->ipv4.mrt = mrt;
    return 0;
    }

    static void __net_exit ipmr_rules_exit(struct net *net)
    {
    rtnl_lock();
    ipmr_free_table(net->ipv4.mrt);
    net->ipv4.mrt = NULL;
    rtnl_unlock();
    }

    static int ipmr_rules_dump(struct net *net, struct notifier_block *nb)
    {
    return 0;
    }

    static unsigned int ipmr_rules_seq_read(struct net *net)
    {
    return 0;
    }

    bool ipmr_rule_default(const struct fib_rule *rule)
    {
    return true;
    }
    EXPORT_SYMBOL(ipmr_rule_default);
    #endif

    static inline int ipmr_hash_cmp(struct rhashtable_compare_arg *arg,
    const void *ptr)
    {
    const struct mfc_cache_cmp_arg *cmparg = arg->key;
    struct mfc_cache *c = (struct mfc_cache *)ptr;

    return cmparg->mfc_mcastgrp != c->mfc_mcastgrp ||
    cmparg->mfc_origin != c->mfc_origin;
    }

    static const struct rhashtable_params ipmr_rht_params = {
    .head_offset = offsetof(struct mr_mfc, mnode),
    .key_offset = offsetof(struct mfc_cache, cmparg),
    .key_len = sizeof(struct mfc_cache_cmp_arg),
    .nelem_hint = 3,
    .locks_mul = 1,
    .obj_cmpfn = ipmr_hash_cmp,
    .automatic_shrinking = true,
    };

    static void ipmr_new_table_set(struct mr_table *mrt,
    struct net *net)
    {
    #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
    list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
    #endif
    }

    static struct mfc_cache_cmp_arg ipmr_mr_table_ops_cmparg_any = {
    .mfc_mcastgrp = htonl(INADDR_ANY),
    .mfc_origin = htonl(INADDR_ANY),
    };

    static struct mr_table_ops ipmr_mr_table_ops = {
    .rht_params = &ipmr_rht_params,
    .cmparg_any = &ipmr_mr_table_ops_cmparg_any,
    };

    static struct mr_table *ipmr_new_table(struct net *net, u32 id)
    {
    struct mr_table *mrt;

    /* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
    if (id != RT_TABLE_DEFAULT && id >= 1000000000)
    return ERR_PTR(-EINVAL);

    mrt = ipmr_get_table(net, id);
    if (mrt)
    return mrt;

    return mr_table_alloc(net, id, &ipmr_mr_table_ops,
    ipmr_expire_process, ipmr_new_table_set);
    }

    static void ipmr_free_table(struct mr_table *mrt)
    {
    del_timer_sync(&mrt->ipmr_expire_timer);
    mroute_clean_tables(mrt, true);
    rhltable_destroy(&mrt->mfc_hash);
    kfree(mrt);
    }

    /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */

    static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
    {
    struct net *net = dev_net(dev);

    dev_close(dev);

    dev = __dev_get_by_name(net, "tunl0");
    if (dev) {
    const struct net_device_ops *ops = dev->netdev_ops;
    struct ifreq ifr;
    struct ip_tunnel_parm p;

    memset(&p, 0, sizeof(p));
    p.iph.daddr = v->vifc_rmt_addr.s_addr;
    p.iph.saddr = v->vifc_lcl_addr.s_addr;
    p.iph.version = 4;
    p.iph.ihl = 5;
    p.iph.protocol = IPPROTO_IPIP;
    sprintf(p.name, "dvmrp%d", v->vifc_vifi);
    ifr.ifr_ifru.ifru_data = (__force void __user *)&p;

    if (ops->ndo_do_ioctl) {
    mm_segment_t oldfs = get_fs();

    set_fs(KERNEL_DS);
    ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
    set_fs(oldfs);
    }
    }
    }

    /* Initialize ipmr pimreg/tunnel in_device */
    static bool ipmr_init_vif_indev(const struct net_device *dev)
    {
    struct in_device *in_dev;

    ASSERT_RTNL();

    in_dev = __in_dev_get_rtnl(dev);
    if (!in_dev)
    return false;
    ipv4_devconf_setall(in_dev);
    neigh_parms_data_state_setall(in_dev->arp_parms);
    IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;

    return true;
    }

    static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
    {
    struct net_device *dev;

    dev = __dev_get_by_name(net, "tunl0");

    if (dev) {
    const struct net_device_ops *ops = dev->netdev_ops;
    int err;
    struct ifreq ifr;
    struct ip_tunnel_parm p;

    memset(&p, 0, sizeof(p));
    p.iph.daddr = v->vifc_rmt_addr.s_addr;
    p.iph.saddr = v->vifc_lcl_addr.s_addr;
    p.iph.version = 4;
    p.iph.ihl = 5;
    p.iph.protocol = IPPROTO_IPIP;
    sprintf(p.name, "dvmrp%d", v->vifc_vifi);
    ifr.ifr_ifru.ifru_data = (__force void __user *)&p;

    if (ops->ndo_do_ioctl) {
    mm_segment_t oldfs = get_fs();

    set_fs(KERNEL_DS);
    err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
    set_fs(oldfs);
    } else {
    err = -EOPNOTSUPP;
    }
    dev = NULL;

    if (err == 0 &&
    (dev = __dev_get_by_name(net, p.name)) != NULL) {
    dev->flags |= IFF_MULTICAST;
    if (!ipmr_init_vif_indev(dev))
    goto failure;
    if (dev_open(dev))
    goto failure;
    dev_hold(dev);
    }
    }
    return dev;

    failure:
    unregister_netdevice(dev);
    return NULL;
    }

    #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
    static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
    {
    struct net *net = dev_net(dev);
    struct mr_table *mrt;
    struct flowi4 fl4 = {
    .flowi4_oif= dev->ifindex,
    .flowi4_iif= skb->skb_iif ? : LOOPBACK_IFINDEX,
    .flowi4_mark= skb->mark,
    };
    int err;

    err = ipmr_fib_lookup(net, &fl4, &mrt);
    if (err < 0) {
    kfree_skb(skb);
    return err;
    }

    read_lock(&mrt_lock);
    dev->stats.tx_bytes += skb->len;
    dev->stats.tx_packets++;
    ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
    read_unlock(&mrt_lock);
    kfree_skb(skb);
    return NETDEV_TX_OK;
    }

    static int reg_vif_get_iflink(const struct net_device *dev)
    {
    return 0;
    }

    static const struct net_device_ops reg_vif_netdev_ops = {
    .ndo_start_xmit= reg_vif_xmit,
    .ndo_get_iflink = reg_vif_get_iflink,
    };

    static void reg_vif_setup(struct net_device *dev)
    {
    dev->type= ARPHRD_PIMREG;
    dev->mtu= ETH_DATA_LEN – sizeof(struct iphdr) – 8;
    dev->flags= IFF_NOARP;
    dev->netdev_ops= &reg_vif_netdev_ops;
    dev->needs_free_netdev= true;
    dev->features|= NETIF_F_NETNS_LOCAL;
    }

    static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
    {
    struct net_device *dev;
    char name[IFNAMSIZ];

    if (mrt->id == RT_TABLE_DEFAULT)
    sprintf(name, "pimreg");
    else
    sprintf(name, "pimreg%u", mrt->id);

    dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);

    if (!dev)
    return NULL;

    dev_net_set(dev, net);

    if (register_netdevice(dev)) {
    free_netdev(dev);
    return NULL;
    }

    if (!ipmr_init_vif_indev(dev))
    goto failure;
    if (dev_open(dev))
    goto failure;

    dev_hold(dev);

    return dev;

    failure:
    unregister_netdevice(dev);
    return NULL;
    }

    /* called with rcu_read_lock() */
    static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
    unsigned int pimlen)
    {
    struct net_device *reg_dev = NULL;
    struct iphdr *encap;

    encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
    /* Check that:
    * a. packet is really sent to a multicast group
    * b. packet is not a NULL-REGISTER
    * c. packet is not truncated
    */
    if (!ipv4_is_multicast(encap->daddr) ||
    encap->tot_len == 0 ||
    ntohs(encap->tot_len) + pimlen > skb->len)
    return 1;

    read_lock(&mrt_lock);
    if (mrt->mroute_reg_vif_num >= 0)
    reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
    read_unlock(&mrt_lock);

    if (!reg_dev)
    return 1;

    skb->mac_header = skb->network_header;
    skb_pull(skb, (u8 *)encap – skb->data);
    skb_reset_network_header(skb);
    skb->protocol = htons(ETH_P_IP);
    skb->ip_summed = CHECKSUM_NONE;

    skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));

    netif_rx(skb);

    return NET_RX_SUCCESS;
    }
    #else
    static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
    {
    return NULL;
    }
    #endif

    static int call_ipmr_vif_entry_notifiers(struct net *net,
    enum fib_event_type event_type,
    struct vif_device *vif,
    vifi_t vif_index, u32 tb_id)
    {
    return mr_call_vif_notifiers(net, RTNL_FAMILY_IPMR, event_type,
    vif, vif_index, tb_id,
    &net->ipv4.ipmr_seq);
    }

    static int call_ipmr_mfc_entry_notifiers(struct net *net,
    enum fib_event_type event_type,
    struct mfc_cache *mfc, u32 tb_id)
    {
    return mr_call_mfc_notifiers(net, RTNL_FAMILY_IPMR, event_type,
    &mfc->_c, tb_id, &net->ipv4.ipmr_seq);
    }

    /**
    *vif_delete – Delete a VIF entry
    *@notify: Set to 1, if the caller is a notifier_call
    */
    static int vif_delete(struct mr_table *mrt, int vifi, int notify,
    struct list_head *head)
    {
    struct net *net = read_pnet(&mrt->net);
    struct vif_device *v;
    struct net_device *dev;
    struct in_device *in_dev;

    if (vifi < 0 || vifi >= mrt->maxvif)
    return -EADDRNOTAVAIL;

    v = &mrt->vif_table[vifi];

    if (VIF_EXISTS(mrt, vifi))
    call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_DEL, v, vifi,
    mrt->id);

    write_lock_bh(&mrt_lock);
    dev = v->dev;
    v->dev = NULL;

    if (!dev) {
    write_unlock_bh(&mrt_lock);
    return -EADDRNOTAVAIL;
    }

    if (vifi == mrt->mroute_reg_vif_num)
    mrt->mroute_reg_vif_num = -1;

    if (vifi + 1 == mrt->maxvif) {
    int tmp;

    for (tmp = vifi – 1; tmp >= 0; tmp–) {
    if (VIF_EXISTS(mrt, tmp))
    break;
    }
    mrt->maxvif = tmp+1;
    }

    write_unlock_bh(&mrt_lock);

    dev_set_allmulti(dev, -1);

    in_dev = __in_dev_get_rtnl(dev);
    if (in_dev) {
    IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)–;
    inet_netconf_notify_devconf(dev_net(dev), RTM_NEWNETCONF,
    NETCONFA_MC_FORWARDING,
    dev->ifindex, &in_dev->cnf);
    ip_rt_multicast_event(in_dev);
    }

    if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
    unregister_netdevice_queue(dev, head);

    dev_put(dev);
    return 0;
    }

    static void ipmr_cache_free_rcu(struct rcu_head *head)
    {
    struct mr_mfc *c = container_of(head, struct mr_mfc, rcu);

    kmem_cache_free(mrt_cachep, (struct mfc_cache *)c);
    }

    static void ipmr_cache_free(struct mfc_cache *c)
    {
    call_rcu(&c->_c.rcu, ipmr_cache_free_rcu);
    }

    /* Destroy an unresolved cache entry, killing queued skbs
    * and reporting error to netlink readers.
    */
    static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
    {
    struct net *net = read_pnet(&mrt->net);
    struct sk_buff *skb;
    struct nlmsgerr *e;

    atomic_dec(&mrt->cache_resolve_queue_len);

    while ((skb = skb_dequeue(&c->_c.mfc_un.unres.unresolved))) {
    if (ip_hdr(skb)->version == 0) {
    struct nlmsghdr *nlh = skb_pull(skb,
    sizeof(struct iphdr));
    nlh->nlmsg_type = NLMSG_ERROR;
    nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
    skb_trim(skb, nlh->nlmsg_len);
    e = nlmsg_data(nlh);
    e->error = -ETIMEDOUT;
    memset(&e->msg, 0, sizeof(e->msg));

    rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
    } else {
    kfree_skb(skb);
    }
    }

    ipmr_cache_free(c);
    }

    /* Timer process for the unresolved queue. */
    static void ipmr_expire_process(struct timer_list *t)
    {
    struct mr_table *mrt = from_timer(mrt, t, ipmr_expire_timer);
    struct mr_mfc *c, *next;
    unsigned long expires;
    unsigned long now;

    if (!spin_trylock(&mfc_unres_lock)) {
    mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
    return;
    }

    if (list_empty(&mrt->mfc_unres_queue))
    goto out;

    now = jiffies;
    expires = 10*HZ;

    list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
    if (time_after(c->mfc_un.unres.expires, now)) {
    unsigned long interval = c->mfc_un.unres.expires – now;
    if (interval < expires)
    expires = interval;
    continue;
    }

    list_del(&c->list);
    mroute_netlink_event(mrt, (struct mfc_cache *)c, RTM_DELROUTE);
    ipmr_destroy_unres(mrt, (struct mfc_cache *)c);
    }

    if (!list_empty(&mrt->mfc_unres_queue))
    mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);

    out:
    spin_unlock(&mfc_unres_lock);
    }

    /* Fill oifs list. It is called under write locked mrt_lock. */
    static void ipmr_update_thresholds(struct mr_table *mrt, struct mr_mfc *cache,
    unsigned char *ttls)
    {
    int vifi;

    cache->mfc_un.res.minvif = MAXVIFS;
    cache->mfc_un.res.maxvif = 0;
    memset(cache->mfc_un.res.ttls, 255, MAXVIFS);

    for (vifi = 0; vifi < mrt->maxvif; vifi++) {
    if (VIF_EXISTS(mrt, vifi) &&
    ttls[vifi] && ttls[vifi] < 255) {
    cache->mfc_un.res.ttls[vifi] = ttls[vifi];
    if (cache->mfc_un.res.minvif > vifi)
    cache->mfc_un.res.minvif = vifi;
    if (cache->mfc_un.res.maxvif <= vifi)
    cache->mfc_un.res.maxvif = vifi + 1;
    }
    }
    cache->mfc_un.res.lastuse = jiffies;
    }

    static int vif_add(struct net *net, struct mr_table *mrt,
    struct vifctl *vifc, int mrtsock)
    {
    int vifi = vifc->vifc_vifi;
    struct switchdev_attr attr = {
    .id = SWITCHDEV_ATTR_ID_PORT_PARENT_ID,
    };
    struct vif_device *v = &mrt->vif_table[vifi];
    struct net_device *dev;
    struct in_device *in_dev;
    int err;

    /* Is vif busy ? */
    if (VIF_EXISTS(mrt, vifi))
    return -EADDRINUSE;

    switch (vifc->vifc_flags) {
    case VIFF_REGISTER:
    if (!ipmr_pimsm_enabled())
    return -EINVAL;
    /* Special Purpose VIF in PIM
    * All the packets will be sent to the daemon
    */
    if (mrt->mroute_reg_vif_num >= 0)
    return -EADDRINUSE;
    dev = ipmr_reg_vif(net, mrt);
    if (!dev)
    return -ENOBUFS;
    err = dev_set_allmulti(dev, 1);
    if (err) {
    unregister_netdevice(dev);
    dev_put(dev);
    return err;
    }
    break;
    case VIFF_TUNNEL:
    dev = ipmr_new_tunnel(net, vifc);
    if (!dev)
    return -ENOBUFS;
    err = dev_set_allmulti(dev, 1);
    if (err) {
    ipmr_del_tunnel(dev, vifc);
    dev_put(dev);
    return err;
    }
    break;
    case VIFF_USE_IFINDEX:
    case 0:
    if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
    dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
    if (dev && !__in_dev_get_rtnl(dev)) {
    dev_put(dev);
    return -EADDRNOTAVAIL;
    }
    } else {
    dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
    }
    if (!dev)
    return -EADDRNOTAVAIL;
    err = dev_set_allmulti(dev, 1);
    if (err) {
    dev_put(dev);
    return err;
    }
    break;
    default:
    return -EINVAL;
    }

    in_dev = __in_dev_get_rtnl(dev);
    if (!in_dev) {
    dev_put(dev);
    return -EADDRNOTAVAIL;
    }
    IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
    inet_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_MC_FORWARDING,
    dev->ifindex, &in_dev->cnf);
    ip_rt_multicast_event(in_dev);

    /* Fill in the VIF structures */
    vif_device_init(v, dev, vifc->vifc_rate_limit,
    vifc->vifc_threshold,
    vifc->vifc_flags | (!mrtsock ? VIFF_STATIC : 0),
    (VIFF_TUNNEL | VIFF_REGISTER));

    attr.orig_dev = dev;
    if (!switchdev_port_attr_get(dev, &attr)) {
    memcpy(v->dev_parent_id.id, attr.u.ppid.id, attr.u.ppid.id_len);
    v->dev_parent_id.id_len = attr.u.ppid.id_len;
    } else {
    v->dev_parent_id.id_len = 0;
    }

    v->local = vifc->vifc_lcl_addr.s_addr;
    v->remote = vifc->vifc_rmt_addr.s_addr;

    /* And finish update writing critical data */
    write_lock_bh(&mrt_lock);
    v->dev = dev;
    if (v->flags & VIFF_REGISTER)
    mrt->mroute_reg_vif_num = vifi;
    if (vifi+1 > mrt->maxvif)
    mrt->maxvif = vifi+1;
    write_unlock_bh(&mrt_lock);
    call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_ADD, v, vifi, mrt->id);
    return 0;
    }

    /* called with rcu_read_lock() */
    static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
    __be32 origin,
    __be32 mcastgrp)
    {
    struct mfc_cache_cmp_arg arg = {
    .mfc_mcastgrp = mcastgrp,
    .mfc_origin = origin
    };

    return mr_mfc_find(mrt, &arg);
    }

    /* Look for a (*,G) entry */
    static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
    __be32 mcastgrp, int vifi)
    {
    struct mfc_cache_cmp_arg arg = {
    .mfc_mcastgrp = mcastgrp,
    .mfc_origin = htonl(INADDR_ANY)
    };

    if (mcastgrp == htonl(INADDR_ANY))
    return mr_mfc_find_any_parent(mrt, vifi);
    return mr_mfc_find_any(mrt, vifi, &arg);
    }

    /* Look for a (S,G,iif) entry if parent != -1 */
    static struct mfc_cache *ipmr_cache_find_parent(struct mr_table *mrt,
    __be32 origin, __be32 mcastgrp,
    int parent)
    {
    struct mfc_cache_cmp_arg arg = {
    .mfc_mcastgrp = mcastgrp,
    .mfc_origin = origin,
    };

    return mr_mfc_find_parent(mrt, &arg, parent);
    }

    /* Allocate a multicast cache entry */
    static struct mfc_cache *ipmr_cache_alloc(void)
    {
    struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);

    if (c) {
    c->_c.mfc_un.res.last_assert = jiffies – MFC_ASSERT_THRESH – 1;
    c->_c.mfc_un.res.minvif = MAXVIFS;
    c->_c.free = ipmr_cache_free_rcu;
    refcount_set(&c->_c.mfc_un.res.refcount, 1);
    }
    return c;
    }

    static struct mfc_cache *ipmr_cache_alloc_unres(void)
    {
    struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);

    if (c) {
    skb_queue_head_init(&c->_c.mfc_un.unres.unresolved);
    c->_c.mfc_un.unres.expires = jiffies + 10 * HZ;
    }
    return c;
    }

    /* A cache entry has gone into a resolved state from queued */
    static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
    struct mfc_cache *uc, struct mfc_cache *c)
    {
    struct sk_buff *skb;
    struct nlmsgerr *e;

    /* Play the pending entries through our router */
    while ((skb = __skb_dequeue(&uc->_c.mfc_un.unres.unresolved))) {
    if (ip_hdr(skb)->version == 0) {
    struct nlmsghdr *nlh = skb_pull(skb,
    sizeof(struct iphdr));

    if (mr_fill_mroute(mrt, skb, &c->_c,
    nlmsg_data(nlh)) > 0) {
    nlh->nlmsg_len = skb_tail_pointer(skb) –
    (u8 *)nlh;
    } else {
    nlh->nlmsg_type = NLMSG_ERROR;
    nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
    skb_trim(skb, nlh->nlmsg_len);
    e = nlmsg_data(nlh);
    e->error = -EMSGSIZE;
    memset(&e->msg, 0, sizeof(e->msg));
    }

    rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
    } else {
    ip_mr_forward(net, mrt, skb->dev, skb, c, 0);
    }
    }
    }

    /* Bounce a cache query up to mrouted and netlink.
    *
    * Called under mrt_lock.
    */
    static int ipmr_cache_report(struct mr_table *mrt,
    struct sk_buff *pkt, vifi_t vifi, int assert)
    {
    const int ihl = ip_hdrlen(pkt);
    struct sock *mroute_sk;
    struct igmphdr *igmp;
    struct igmpmsg *msg;
    struct sk_buff *skb;
    int ret;

    if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE)
    skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
    else
    skb = alloc_skb(128, GFP_ATOMIC);

    if (!skb)
    return -ENOBUFS;

    if (assert == IGMPMSG_WHOLEPKT || assert == IGMPMSG_WRVIFWHOLE) {
    /* Ugly, but we have no choice with this interface.
    * Duplicate old header, fix ihl, length etc.
    * And all this only to mangle msg->im_msgtype and
    * to set msg->im_mbz to "mbz" 🙂
    */
    skb_push(skb, sizeof(struct iphdr));
    skb_reset_network_header(skb);
    skb_reset_transport_header(skb);
    msg = (struct igmpmsg *)skb_network_header(skb);
    memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
    msg->im_msgtype = assert;
    msg->im_mbz = 0;
    if (assert == IGMPMSG_WRVIFWHOLE)
    msg->im_vif = vifi;
    else
    msg->im_vif = mrt->mroute_reg_vif_num;
    ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
    ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
    sizeof(struct iphdr));
    } else {
    /* Copy the IP header */
    skb_set_network_header(skb, skb->len);
    skb_put(skb, ihl);
    skb_copy_to_linear_data(skb, pkt->data, ihl);
    /* Flag to the kernel this is a route add */
    ip_hdr(skb)->protocol = 0;
    msg = (struct igmpmsg *)skb_network_header(skb);
    msg->im_vif = vifi;
    skb_dst_set(skb, dst_clone(skb_dst(pkt)));
    /* Add our header */
    igmp = skb_put(skb, sizeof(struct igmphdr));
    igmp->type = assert;
    msg->im_msgtype = assert;
    igmp->code = 0;
    ip_hdr(skb)->tot_len = htons(skb->len);/* Fix the length */
    skb->transport_header = skb->network_header;
    }

    rcu_read_lock();
    mroute_sk = rcu_dereference(mrt->mroute_sk);
    if (!mroute_sk) {
    rcu_read_unlock();
    kfree_skb(skb);
    return -EINVAL;
    }

    igmpmsg_netlink_event(mrt, skb);

    /* Deliver to mrouted */
    ret = sock_queue_rcv_skb(mroute_sk, skb);
    rcu_read_unlock();
    if (ret < 0) {
    net_warn_ratelimited("mroute: pending queue full, dropping entries\\n");
    kfree_skb(skb);
    }

    return ret;
    }

    /* Queue a packet for resolution. It gets locked cache entry! */
    static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi,
    struct sk_buff *skb, struct net_device *dev)
    {
    const struct iphdr *iph = ip_hdr(skb);
    struct mfc_cache *c;
    bool found = false;
    int err;

    spin_lock_bh(&mfc_unres_lock);
    list_for_each_entry(c, &mrt->mfc_unres_queue, _c.list) {
    if (c->mfc_mcastgrp == iph->daddr &&
    c->mfc_origin == iph->saddr) {
    found = true;
    break;
    }
    }

    if (!found) {
    /* Create a new entry if allowable */
    if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
    (c = ipmr_cache_alloc_unres()) == NULL) {
    spin_unlock_bh(&mfc_unres_lock);

    kfree_skb(skb);
    return -ENOBUFS;
    }

    /* Fill in the new cache entry */
    c->_c.mfc_parent = -1;
    c->mfc_origin= iph->saddr;
    c->mfc_mcastgrp= iph->daddr;

    /* Reflect first query at mrouted. */
    err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);

    if (err < 0) {
    /* If the report failed throw the cache entry
    out – Brad Parker
    */
    spin_unlock_bh(&mfc_unres_lock);

    ipmr_cache_free(c);
    kfree_skb(skb);
    return err;
    }

    atomic_inc(&mrt->cache_resolve_queue_len);
    list_add(&c->_c.list, &mrt->mfc_unres_queue);
    mroute_netlink_event(mrt, c, RTM_NEWROUTE);

    if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
    mod_timer(&mrt->ipmr_expire_timer,
    c->_c.mfc_un.unres.expires);
    }

    /* See if we can append the packet */
    if (c->_c.mfc_un.unres.unresolved.qlen > 3) {
    kfree_skb(skb);
    err = -ENOBUFS;
    } else {
    if (dev) {
    skb->dev = dev;
    skb->skb_iif = dev->ifindex;
    }
    skb_queue_tail(&c->_c.mfc_un.unres.unresolved, skb);
    err = 0;
    }

    spin_unlock_bh(&mfc_unres_lock);
    return err;
    }

    /* MFC cache manipulation by user space mroute daemon */

    static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
    {
    struct net *net = read_pnet(&mrt->net);
    struct mfc_cache *c;

    /* The entries are added/deleted only under RTNL */
    rcu_read_lock();
    c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
    mfc->mfcc_mcastgrp.s_addr, parent);
    rcu_read_unlock();
    if (!c)
    return -ENOENT;
    rhltable_remove(&mrt->mfc_hash, &c->_c.mnode, ipmr_rht_params);
    list_del_rcu(&c->_c.list);
    call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, c, mrt->id);
    mroute_netlink_event(mrt, c, RTM_DELROUTE);
    mr_cache_put(&c->_c);

    return 0;
    }

    static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
    struct mfcctl *mfc, int mrtsock, int parent)
    {
    struct mfc_cache *uc, *c;
    struct mr_mfc *_uc;
    bool found;
    int ret;

    if (mfc->mfcc_parent >= MAXVIFS)
    return -ENFILE;

    /* The entries are added/deleted only under RTNL */
    rcu_read_lock();
    c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
    mfc->mfcc_mcastgrp.s_addr, parent);
    rcu_read_unlock();
    if (c) {
    write_lock_bh(&mrt_lock);
    c->_c.mfc_parent = mfc->mfcc_parent;
    ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
    if (!mrtsock)
    c->_c.mfc_flags |= MFC_STATIC;
    write_unlock_bh(&mrt_lock);
    call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE, c,
    mrt->id);
    mroute_netlink_event(mrt, c, RTM_NEWROUTE);
    return 0;
    }

    if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
    !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
    return -EINVAL;

    c = ipmr_cache_alloc();
    if (!c)
    return -ENOMEM;

    c->mfc_origin = mfc->mfcc_origin.s_addr;
    c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
    c->_c.mfc_parent = mfc->mfcc_parent;
    ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
    if (!mrtsock)
    c->_c.mfc_flags |= MFC_STATIC;

    ret = rhltable_insert_key(&mrt->mfc_hash, &c->cmparg, &c->_c.mnode,
    ipmr_rht_params);
    if (ret) {
    pr_err("ipmr: rhtable insert error %d\\n", ret);
    ipmr_cache_free(c);
    return ret;
    }
    list_add_tail_rcu(&c->_c.list, &mrt->mfc_cache_list);
    /* Check to see if we resolved a queued list. If so we
    * need to send on the frames and tidy up.
    */
    found = false;
    spin_lock_bh(&mfc_unres_lock);
    list_for_each_entry(_uc, &mrt->mfc_unres_queue, list) {
    uc = (struct mfc_cache *)_uc;
    if (uc->mfc_origin == c->mfc_origin &&
    uc->mfc_mcastgrp == c->mfc_mcastgrp) {
    list_del(&_uc->list);
    atomic_dec(&mrt->cache_resolve_queue_len);
    found = true;
    break;
    }
    }
    if (list_empty(&mrt->mfc_unres_queue))
    del_timer(&mrt->ipmr_expire_timer);
    spin_unlock_bh(&mfc_unres_lock);

    if (found) {
    ipmr_cache_resolve(net, mrt, uc, c);
    ipmr_cache_free(uc);
    }
    call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_ADD, c, mrt->id);
    mroute_netlink_event(mrt, c, RTM_NEWROUTE);
    return 0;
    }

    /* Close the multicast socket, and clear the vif tables etc */
    static void mroute_clean_tables(struct mr_table *mrt, bool all)
    {
    struct net *net = read_pnet(&mrt->net);
    struct mr_mfc *c, *tmp;
    struct mfc_cache *cache;
    LIST_HEAD(list);
    int i;

    /* Shut down all active vif entries */
    for (i = 0; i < mrt->maxvif; i++) {
    if (!all && (mrt->vif_table[i].flags & VIFF_STATIC))
    continue;
    vif_delete(mrt, i, 0, &list);
    }
    unregister_netdevice_many(&list);

    /* Wipe the cache */
    list_for_each_entry_safe(c, tmp, &mrt->mfc_cache_list, list) {
    if (!all && (c->mfc_flags & MFC_STATIC))
    continue;
    rhltable_remove(&mrt->mfc_hash, &c->mnode, ipmr_rht_params);
    list_del_rcu(&c->list);
    cache = (struct mfc_cache *)c;
    call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, cache,
    mrt->id);
    mroute_netlink_event(mrt, cache, RTM_DELROUTE);
    mr_cache_put(c);
    }

    if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
    spin_lock_bh(&mfc_unres_lock);
    list_for_each_entry_safe(c, tmp, &mrt->mfc_unres_queue, list) {
    list_del(&c->list);
    cache = (struct mfc_cache *)c;
    mroute_netlink_event(mrt, cache, RTM_DELROUTE);
    ipmr_destroy_unres(mrt, cache);
    }
    spin_unlock_bh(&mfc_unres_lock);
    }
    }

    /* called from ip_ra_control(), before an RCU grace period,
    * we dont need to call synchronize_rcu() here
    */
    static void mrtsock_destruct(struct sock *sk)
    {
    struct net *net = sock_net(sk);
    struct mr_table *mrt;

    rtnl_lock();
    ipmr_for_each_table(mrt, net) {
    if (sk == rtnl_dereference(mrt->mroute_sk)) {
    IPV4_DEVCONF_ALL(net, MC_FORWARDING)–;
    inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
    NETCONFA_MC_FORWARDING,
    NETCONFA_IFINDEX_ALL,
    net->ipv4.devconf_all);
    RCU_INIT_POINTER(mrt->mroute_sk, NULL);
    mroute_clean_tables(mrt, false);
    }
    }
    rtnl_unlock();
    }

    /* Socket options and virtual interface manipulation. The whole
    * virtual interface system is a complete heap, but unfortunately
    * that's how BSD mrouted happens to think. Maybe one day with a proper
    * MOSPF/PIM router set up we can clean this up.
    */

    int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval,
    unsigned int optlen)
    {
    struct net *net = sock_net(sk);
    int val, ret = 0, parent = 0;
    struct mr_table *mrt;
    struct vifctl vif;
    struct mfcctl mfc;
    bool do_wrvifwhole;
    u32 uval;

    /* There's one exception to the lock – MRT_DONE which needs to unlock */
    rtnl_lock();
    if (sk->sk_type != SOCK_RAW ||
    inet_sk(sk)->inet_num != IPPROTO_IGMP) {
    ret = -EOPNOTSUPP;
    goto out_unlock;
    }

    mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
    if (!mrt) {
    ret = -ENOENT;
    goto out_unlock;
    }
    if (optname != MRT_INIT) {
    if (sk != rcu_access_pointer(mrt->mroute_sk) &&
    !ns_capable(net->user_ns, CAP_NET_ADMIN)) {
    ret = -EACCES;
    goto out_unlock;
    }
    }

    switch (optname) {
    case MRT_INIT:
    if (optlen != sizeof(int)) {
    ret = -EINVAL;
    break;
    }
    if (rtnl_dereference(mrt->mroute_sk)) {
    ret = -EADDRINUSE;
    break;
    }

    ret = ip_ra_control(sk, 1, mrtsock_destruct);
    if (ret == 0) {
    rcu_assign_pointer(mrt->mroute_sk, sk);
    IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
    inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
    NETCONFA_MC_FORWARDING,
    NETCONFA_IFINDEX_ALL,
    net->ipv4.devconf_all);
    }
    break;
    case MRT_DONE:
    if (sk != rcu_access_pointer(mrt->mroute_sk)) {
    ret = -EACCES;
    } else {
    /* We need to unlock here because mrtsock_destruct takes
    * care of rtnl itself and we can't change that due to
    * the IP_ROUTER_ALERT setsockopt which runs without it.
    */
    rtnl_unlock();
    ret = ip_ra_control(sk, 0, NULL);
    goto out;
    }
    break;
    case MRT_ADD_VIF:
    case MRT_DEL_VIF:
    if (optlen != sizeof(vif)) {
    ret = -EINVAL;
    break;
    }
    if (copy_from_user(&vif, optval, sizeof(vif))) {
    ret = -EFAULT;
    break;
    }
    if (vif.vifc_vifi >= MAXVIFS) {
    ret = -ENFILE;
    break;
    }
    if (optname == MRT_ADD_VIF) {
    ret = vif_add(net, mrt, &vif,
    sk == rtnl_dereference(mrt->mroute_sk));
    } else {
    ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
    }
    break;
    /* Manipulate the forwarding caches. These live
    * in a sort of kernel/user symbiosis.
    */
    case MRT_ADD_MFC:
    case MRT_DEL_MFC:
    parent = -1;
    /* fall through */
    case MRT_ADD_MFC_PROXY:
    case MRT_DEL_MFC_PROXY:
    if (optlen != sizeof(mfc)) {
    ret = -EINVAL;
    break;
    }
    if (copy_from_user(&mfc, optval, sizeof(mfc))) {
    ret = -EFAULT;
    break;
    }
    if (parent == 0)
    parent = mfc.mfcc_parent;
    if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
    ret = ipmr_mfc_delete(mrt, &mfc, parent);
    else
    ret = ipmr_mfc_add(net, mrt, &mfc,
    sk == rtnl_dereference(mrt->mroute_sk),
    parent);
    break;
    /* Control PIM assert. */
    case MRT_ASSERT:
    if (optlen != sizeof(val)) {
    ret = -EINVAL;
    break;
    }
    if (get_user(val, (int __user *)optval)) {
    ret = -EFAULT;
    break;
    }
    mrt->mroute_do_assert = val;
    break;
    case MRT_PIM:
    if (!ipmr_pimsm_enabled()) {
    ret = -ENOPROTOOPT;
    break;
    }
    if (optlen != sizeof(val)) {
    ret = -EINVAL;
    break;
    }
    if (get_user(val, (int __user *)optval)) {
    ret = -EFAULT;
    break;
    }

    do_wrvifwhole = (val == IGMPMSG_WRVIFWHOLE);
    val = !!val;
    if (val != mrt->mroute_do_pim) {
    mrt->mroute_do_pim = val;
    mrt->mroute_do_assert = val;
    mrt->mroute_do_wrvifwhole = do_wrvifwhole;
    }
    break;
    case MRT_TABLE:
    if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) {
    ret = -ENOPROTOOPT;
    break;
    }
    if (optlen != sizeof(uval)) {
    ret = -EINVAL;
    break;
    }
    if (get_user(uval, (u32 __user *)optval)) {
    ret = -EFAULT;
    break;
    }

    if (sk == rtnl_dereference(mrt->mroute_sk)) {
    ret = -EBUSY;
    } else {
    mrt = ipmr_new_table(net, uval);
    if (IS_ERR(mrt))
    ret = PTR_ERR(mrt);
    else
    raw_sk(sk)->ipmr_table = uval;
    }
    break;
    /* Spurious command, or MRT_VERSION which you cannot set. */
    default:
    ret = -ENOPROTOOPT;
    }
    out_unlock:
    rtnl_unlock();
    out:
    return ret;
    }

    /* Getsock opt support for the multicast routing system. */
    int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
    {
    int olr;
    int val;
    struct net *net = sock_net(sk);
    struct mr_table *mrt;

    if (sk->sk_type != SOCK_RAW ||
    inet_sk(sk)->inet_num != IPPROTO_IGMP)
    return -EOPNOTSUPP;

    mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
    if (!mrt)
    return -ENOENT;

    switch (optname) {
    case MRT_VERSION:
    val = 0x0305;
    break;
    case MRT_PIM:
    if (!ipmr_pimsm_enabled())
    return -ENOPROTOOPT;
    val = mrt->mroute_do_pim;
    break;
    case MRT_ASSERT:
    val = mrt->mroute_do_assert;
    break;
    default:
    return -ENOPROTOOPT;
    }

    if (get_user(olr, optlen))
    return -EFAULT;
    olr = min_t(unsigned int, olr, sizeof(int));
    if (olr < 0)
    return -EINVAL;
    if (put_user(olr, optlen))
    return -EFAULT;
    if (copy_to_user(optval, &val, olr))
    return -EFAULT;
    return 0;
    }

    /* The IP multicast ioctl support routines. */
    int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
    {
    struct sioc_sg_req sr;
    struct sioc_vif_req vr;
    struct vif_device *vif;
    struct mfc_cache *c;
    struct net *net = sock_net(sk);
    struct mr_table *mrt;

    mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
    if (!mrt)
    return -ENOENT;

    switch (cmd) {
    case SIOCGETVIFCNT:
    if (copy_from_user(&vr, arg, sizeof(vr)))
    return -EFAULT;
    if (vr.vifi >= mrt->maxvif)
    return -EINVAL;
    vr.vifi = array_index_nospec(vr.vifi, mrt->maxvif);
    read_lock(&mrt_lock);
    vif = &mrt->vif_table[vr.vifi];
    if (VIF_EXISTS(mrt, vr.vifi)) {
    vr.icount = vif->pkt_in;
    vr.ocount = vif->pkt_out;
    vr.ibytes = vif->bytes_in;
    vr.obytes = vif->bytes_out;
    read_unlock(&mrt_lock);

    if (copy_to_user(arg, &vr, sizeof(vr)))
    return -EFAULT;
    return 0;
    }
    read_unlock(&mrt_lock);
    return -EADDRNOTAVAIL;
    case SIOCGETSGCNT:
    if (copy_from_user(&sr, arg, sizeof(sr)))
    return -EFAULT;

    rcu_read_lock();
    c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
    if (c) {
    sr.pktcnt = c->_c.mfc_un.res.pkt;
    sr.bytecnt = c->_c.mfc_un.res.bytes;
    sr.wrong_if = c->_c.mfc_un.res.wrong_if;
    rcu_read_unlock();

    if (copy_to_user(arg, &sr, sizeof(sr)))
    return -EFAULT;
    return 0;
    }
    rcu_read_unlock();
    return -EADDRNOTAVAIL;
    default:
    return -ENOIOCTLCMD;
    }
    }

    #ifdef CONFIG_COMPAT
    struct compat_sioc_sg_req {
    struct in_addr src;
    struct in_addr grp;
    compat_ulong_t pktcnt;
    compat_ulong_t bytecnt;
    compat_ulong_t wrong_if;
    };

    struct compat_sioc_vif_req {
    vifi_tvifi;/* Which iface */
    compat_ulong_t icount;
    compat_ulong_t ocount;
    compat_ulong_t ibytes;
    compat_ulong_t obytes;
    };

    int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
    {
    struct compat_sioc_sg_req sr;
    struct compat_sioc_vif_req vr;
    struct vif_device *vif;
    struct mfc_cache *c;
    struct net *net = sock_net(sk);
    struct mr_table *mrt;

    mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
    if (!mrt)
    return -ENOENT;

    switch (cmd) {
    case SIOCGETVIFCNT:
    if (copy_from_user(&vr, arg, sizeof(vr)))
    return -EFAULT;
    if (vr.vifi >= mrt->maxvif)
    return -EINVAL;
    vr.vifi = array_index_nospec(vr.vifi, mrt->maxvif);
    read_lock(&mrt_lock);
    vif = &mrt->vif_table[vr.vifi];
    if (VIF_EXISTS(mrt, vr.vifi)) {
    vr.icount = vif->pkt_in;
    vr.ocount = vif->pkt_out;
    vr.ibytes = vif->bytes_in;
    vr.obytes = vif->bytes_out;
    read_unlock(&mrt_lock);

    if (copy_to_user(arg, &vr, sizeof(vr)))
    return -EFAULT;
    return 0;
    }
    read_unlock(&mrt_lock);
    return -EADDRNOTAVAIL;
    case SIOCGETSGCNT:
    if (copy_from_user(&sr, arg, sizeof(sr)))
    return -EFAULT;

    rcu_read_lock();
    c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
    if (c) {
    sr.pktcnt = c->_c.mfc_un.res.pkt;
    sr.bytecnt = c->_c.mfc_un.res.bytes;
    sr.wrong_if = c->_c.mfc_un.res.wrong_if;
    rcu_read_unlock();

    if (copy_to_user(arg, &sr, sizeof(sr)))
    return -EFAULT;
    return 0;
    }
    rcu_read_unlock();
    return -EADDRNOTAVAIL;
    default:
    return -ENOIOCTLCMD;
    }
    }
    #endif

    static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
    {
    struct net_device *dev = netdev_notifier_info_to_dev(ptr);
    struct net *net = dev_net(dev);
    struct mr_table *mrt;
    struct vif_device *v;
    int ct;

    if (event != NETDEV_UNREGISTER)
    return NOTIFY_DONE;

    ipmr_for_each_table(mrt, net) {
    v = &mrt->vif_table[0];
    for (ct = 0; ct < mrt->maxvif; ct++, v++) {
    if (v->dev == dev)
    vif_delete(mrt, ct, 1, NULL);
    }
    }
    return NOTIFY_DONE;
    }

    static struct notifier_block ip_mr_notifier = {
    .notifier_call = ipmr_device_event,
    };

    /* Encapsulate a packet by attaching a valid IPIP header to it.
    * This avoids tunnel drivers and other mess and gives us the speed so
    * important for multicast video.
    */
    static void ip_encap(struct net *net, struct sk_buff *skb,
    __be32 saddr, __be32 daddr)
    {
    struct iphdr *iph;
    const struct iphdr *old_iph = ip_hdr(skb);

    skb_push(skb, sizeof(struct iphdr));
    skb->transport_header = skb->network_header;
    skb_reset_network_header(skb);
    iph = ip_hdr(skb);

    iph->version=4;
    iph->tos=old_iph->tos;
    iph->ttl=old_iph->ttl;
    iph->frag_off=0;
    iph->daddr=daddr;
    iph->saddr=saddr;
    iph->protocol=IPPROTO_IPIP;
    iph->ihl=5;
    iph->tot_len=htons(skb->len);
    ip_select_ident(net, skb, NULL);
    ip_send_check(iph);

    memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
    nf_reset(skb);
    }

    static inline int ipmr_forward_finish(struct net *net, struct sock *sk,
    struct sk_buff *skb)
    {
    struct ip_options *opt = &(IPCB(skb)->opt);

    IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS);
    IP_ADD_STATS(net, IPSTATS_MIB_OUTOCTETS, skb->len);

    if (unlikely(opt->optlen))
    ip_forward_options(skb);

    return dst_output(net, sk, skb);
    }

    #ifdef CONFIG_NET_SWITCHDEV
    static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
    int in_vifi, int out_vifi)
    {
    struct vif_device *out_vif = &mrt->vif_table[out_vifi];
    struct vif_device *in_vif = &mrt->vif_table[in_vifi];

    if (!skb->offload_mr_fwd_mark)
    return false;
    if (!out_vif->dev_parent_id.id_len || !in_vif->dev_parent_id.id_len)
    return false;
    return netdev_phys_item_id_same(&out_vif->dev_parent_id,
    &in_vif->dev_parent_id);
    }
    #else
    static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
    int in_vifi, int out_vifi)
    {
    return false;
    }
    #endif

    /* Processing handlers for ipmr_forward */

    static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
    int in_vifi, struct sk_buff *skb,
    struct mfc_cache *c, int vifi)
    {
    const struct iphdr *iph = ip_hdr(skb);
    struct vif_device *vif = &mrt->vif_table[vifi];
    struct net_device *dev;
    struct rtable *rt;
    struct flowi4 fl4;
    int encap = 0;

    if (!vif->dev)
    goto out_free;

    if (vif->flags & VIFF_REGISTER) {
    vif->pkt_out++;
    vif->bytes_out += skb->len;
    vif->dev->stats.tx_bytes += skb->len;
    vif->dev->stats.tx_packets++;
    ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
    goto out_free;
    }

    if (ipmr_forward_offloaded(skb, mrt, in_vifi, vifi))
    goto out_free;

    if (vif->flags & VIFF_TUNNEL) {
    rt = ip_route_output_ports(net, &fl4, NULL,
    vif->remote, vif->local,
    0, 0,
    IPPROTO_IPIP,
    RT_TOS(iph->tos), vif->link);
    if (IS_ERR(rt))
    goto out_free;
    encap = sizeof(struct iphdr);
    } else {
    rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
    0, 0,
    IPPROTO_IPIP,
    RT_TOS(iph->tos), vif->link);
    if (IS_ERR(rt))
    goto out_free;
    }

    dev = rt->dst.dev;

    if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
    /* Do not fragment multicasts. Alas, IPv4 does not
    * allow to send ICMP, so that packets will disappear
    * to blackhole.
    */
    IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
    ip_rt_put(rt);
    goto out_free;
    }

    encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;

    if (skb_cow(skb, encap)) {
    ip_rt_put(rt);
    goto out_free;
    }

    vif->pkt_out++;
    vif->bytes_out += skb->len;

    skb_dst_drop(skb);
    skb_dst_set(skb, &rt->dst);
    ip_decrease_ttl(ip_hdr(skb));

    /* FIXME: forward and output firewalls used to be called here.
    * What do we do with netfilter? — RR
    */
    if (vif->flags & VIFF_TUNNEL) {
    ip_encap(net, skb, vif->local, vif->remote);
    /* FIXME: extra output firewall step used to be here. –RR */
    vif->dev->stats.tx_packets++;
    vif->dev->stats.tx_bytes += skb->len;
    }

    IPCB(skb)->flags |= IPSKB_FORWARDED;

    /* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
    * not only before forwarding, but after forwarding on all output
    * interfaces. It is clear, if mrouter runs a multicasting
    * program, it should receive packets not depending to what interface
    * program is joined.
    * If we will not make it, the program will have to join on all
    * interfaces. On the other hand, multihoming host (or router, but
    * not mrouter) cannot join to more than one interface – it will
    * result in receiving multiple packets.
    */
    NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD,
    net, NULL, skb, skb->dev, dev,
    ipmr_forward_finish);
    return;

    out_free:
    kfree_skb(skb);
    }

    static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
    {
    int ct;

    for (ct = mrt->maxvif-1; ct >= 0; ct–) {
    if (mrt->vif_table[ct].dev == dev)
    break;
    }
    return ct;
    }

    /* "local" means that we should preserve one skb (for local delivery) */
    static void ip_mr_forward(struct net *net, struct mr_table *mrt,
    struct net_device *dev, struct sk_buff *skb,
    struct mfc_cache *c, int local)
    {
    int true_vifi = ipmr_find_vif(mrt, dev);
    int psend = -1;
    int vif, ct;

    vif = c->_c.mfc_parent;
    c->_c.mfc_un.res.pkt++;
    c->_c.mfc_un.res.bytes += skb->len;
    c->_c.mfc_un.res.lastuse = jiffies;

    if (c->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
    struct mfc_cache *cache_proxy;

    /* For an (*,G) entry, we only check that the incomming
    * interface is part of the static tree.
    */
    cache_proxy = mr_mfc_find_any_parent(mrt, vif);
    if (cache_proxy &&
    cache_proxy->_c.mfc_un.res.ttls[true_vifi] < 255)
    goto forward;
    }

    /* Wrong interface: drop packet and (maybe) send PIM assert. */
    if (mrt->vif_table[vif].dev != dev) {
    if (rt_is_output_route(skb_rtable(skb))) {
    /* It is our own packet, looped back.
    * Very complicated situation…
    *
    * The best workaround until routing daemons will be
    * fixed is not to redistribute packet, if it was
    * send through wrong interface. It means, that
    * multicast applications WILL NOT work for
    * (S,G), which have default multicast route pointing
    * to wrong oif. In any case, it is not a good
    * idea to use multicasting applications on router.
    */
    goto dont_forward;
    }

    c->_c.mfc_un.res.wrong_if++;

    if (true_vifi >= 0 && mrt->mroute_do_assert &&
    /* pimsm uses asserts, when switching from RPT to SPT,
    * so that we cannot check that packet arrived on an oif.
    * It is bad, but otherwise we would need to move pretty
    * large chunk of pimd to kernel. Ough… –ANK
    */
    (mrt->mroute_do_pim ||
    c->_c.mfc_un.res.ttls[true_vifi] < 255) &&
    time_after(jiffies,
    c->_c.mfc_un.res.last_assert +
    MFC_ASSERT_THRESH)) {
    c->_c.mfc_un.res.last_assert = jiffies;
    ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
    if (mrt->mroute_do_wrvifwhole)
    ipmr_cache_report(mrt, skb, true_vifi,
    IGMPMSG_WRVIFWHOLE);
    }
    goto dont_forward;
    }

    forward:
    mrt->vif_table[vif].pkt_in++;
    mrt->vif_table[vif].bytes_in += skb->len;

    /* Forward the frame */
    if (c->mfc_origin == htonl(INADDR_ANY) &&
    c->mfc_mcastgrp == htonl(INADDR_ANY)) {
    if (true_vifi >= 0 &&
    true_vifi != c->_c.mfc_parent &&
    ip_hdr(skb)->ttl >
    c->_c.mfc_un.res.ttls[c->_c.mfc_parent]) {
    /* It's an (*,*) entry and the packet is not coming from
    * the upstream: forward the packet to the upstream
    * only.
    */
    psend = c->_c.mfc_parent;
    goto last_forward;
    }
    goto dont_forward;
    }
    for (ct = c->_c.mfc_un.res.maxvif – 1;
    ct >= c->_c.mfc_un.res.minvif; ct–) {
    /* For (*,G) entry, don't forward to the incoming interface */
    if ((c->mfc_origin != htonl(INADDR_ANY) ||
    ct != true_vifi) &&
    ip_hdr(skb)->ttl > c->_c.mfc_un.res.ttls[ct]) {
    if (psend != -1) {
    struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);

    if (skb2)
    ipmr_queue_xmit(net, mrt, true_vifi,
    skb2, c, psend);
    }
    psend = ct;
    }
    }
    last_forward:
    if (psend != -1) {
    if (local) {
    struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);

    if (skb2)
    ipmr_queue_xmit(net, mrt, true_vifi, skb2,
    c, psend);
    } else {
    ipmr_queue_xmit(net, mrt, true_vifi, skb, c, psend);
    return;
    }
    }

    dont_forward:
    if (!local)
    kfree_skb(skb);
    }

    static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
    {
    struct rtable *rt = skb_rtable(skb);
    struct iphdr *iph = ip_hdr(skb);
    struct flowi4 fl4 = {
    .daddr = iph->daddr,
    .saddr = iph->saddr,
    .flowi4_tos = RT_TOS(iph->tos),
    .flowi4_oif = (rt_is_output_route(rt) ?
    skb->dev->ifindex : 0),
    .flowi4_iif = (rt_is_output_route(rt) ?
    LOOPBACK_IFINDEX :
    skb->dev->ifindex),
    .flowi4_mark = skb->mark,
    };
    struct mr_table *mrt;
    int err;

    err = ipmr_fib_lookup(net, &fl4, &mrt);
    if (err)
    return ERR_PTR(err);
    return mrt;
    }

    /* Multicast packets for forwarding arrive here
    * Called with rcu_read_lock();
    */
    int ip_mr_input(struct sk_buff *skb)
    {
    struct mfc_cache *cache;
    struct net *net = dev_net(skb->dev);
    int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
    struct mr_table *mrt;
    struct net_device *dev;

    /* skb->dev passed in is the loX master dev for vrfs.
    * As there are no vifs associated with loopback devices,
    * get the proper interface that does have a vif associated with it.
    */
    dev = skb->dev;
    if (netif_is_l3_master(skb->dev)) {
    dev = dev_get_by_index_rcu(net, IPCB(skb)->iif);
    if (!dev) {
    kfree_skb(skb);
    return -ENODEV;
    }
    }

    /* Packet is looped back after forward, it should not be
    * forwarded second time, but still can be delivered locally.
    */
    if (IPCB(skb)->flags & IPSKB_FORWARDED)
    goto dont_forward;

    mrt = ipmr_rt_fib_lookup(net, skb);
    if (IS_ERR(mrt)) {
    kfree_skb(skb);
    return PTR_ERR(mrt);
    }
    if (!local) {
    if (IPCB(skb)->opt.router_alert) {
    if (ip_call_ra_chain(skb))
    return 0;
    } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
    /* IGMPv1 (and broken IGMPv2 implementations sort of
    * Cisco IOS <= 11.2(8)) do not put router alert
    * option to IGMP packets destined to routable
    * groups. It is very bad, because it means
    * that we can forward NO IGMP messages.
    */
    struct sock *mroute_sk;

    mroute_sk = rcu_dereference(mrt->mroute_sk);
    if (mroute_sk) {
    nf_reset(skb);
    raw_rcv(mroute_sk, skb);
    return 0;
    }
    }
    }

    /* already under rcu_read_lock() */
    cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
    if (!cache) {
    int vif = ipmr_find_vif(mrt, dev);

    if (vif >= 0)
    cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
    vif);
    }

    /* No usable cache entry */
    if (!cache) {
    int vif;

    if (local) {
    struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
    ip_local_deliver(skb);
    if (!skb2)
    return -ENOBUFS;
    skb = skb2;
    }

    read_lock(&mrt_lock);
    vif = ipmr_find_vif(mrt, dev);
    if (vif >= 0) {
    int err2 = ipmr_cache_unresolved(mrt, vif, skb, dev);
    read_unlock(&mrt_lock);

    return err2;
    }
    read_unlock(&mrt_lock);
    kfree_skb(skb);
    return -ENODEV;
    }

    read_lock(&mrt_lock);
    ip_mr_forward(net, mrt, dev, skb, cache, local);
    read_unlock(&mrt_lock);

    if (local)
    return ip_local_deliver(skb);

    return 0;

    dont_forward:
    if (local)
    return ip_local_deliver(skb);
    kfree_skb(skb);
    return 0;
    }

    #ifdef CONFIG_IP_PIMSM_V1
    /* Handle IGMP messages of PIMv1 */
    int pim_rcv_v1(struct sk_buff *skb)
    {
    struct igmphdr *pim;
    struct net *net = dev_net(skb->dev);
    struct mr_table *mrt;

    if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
    goto drop;

    pim = igmp_hdr(skb);

    mrt = ipmr_rt_fib_lookup(net, skb);
    if (IS_ERR(mrt))
    goto drop;
    if (!mrt->mroute_do_pim ||
    pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
    goto drop;

    if (__pim_rcv(mrt, skb, sizeof(*pim))) {
    drop:
    kfree_skb(skb);
    }
    return 0;
    }
    #endif

    #ifdef CONFIG_IP_PIMSM_V2
    static int pim_rcv(struct sk_buff *skb)
    {
    struct pimreghdr *pim;
    struct net *net = dev_net(skb->dev);
    struct mr_table *mrt;

    if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
    goto drop;

    pim = (struct pimreghdr *)skb_transport_header(skb);
    if (pim->type != ((PIM_VERSION << 4) | (PIM_TYPE_REGISTER)) ||
    (pim->flags & PIM_NULL_REGISTER) ||
    (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
    csum_fold(skb_checksum(skb, 0, skb->len, 0))))
    goto drop;

    mrt = ipmr_rt_fib_lookup(net, skb);
    if (IS_ERR(mrt))
    goto drop;
    if (__pim_rcv(mrt, skb, sizeof(*pim))) {
    drop:
    kfree_skb(skb);
    }
    return 0;
    }
    #endif

    int ipmr_get_route(struct net *net, struct sk_buff *skb,
    __be32 saddr, __be32 daddr,
    struct rtmsg *rtm, u32 portid)
    {
    struct mfc_cache *cache;
    struct mr_table *mrt;
    int err;

    mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
    if (!mrt)
    return -ENOENT;

    rcu_read_lock();
    cache = ipmr_cache_find(mrt, saddr, daddr);
    if (!cache && skb->dev) {
    int vif = ipmr_find_vif(mrt, skb->dev);

    if (vif >= 0)
    cache = ipmr_cache_find_any(mrt, daddr, vif);
    }
    if (!cache) {
    struct sk_buff *skb2;
    struct iphdr *iph;
    struct net_device *dev;
    int vif = -1;

    dev = skb->dev;
    read_lock(&mrt_lock);
    if (dev)
    vif = ipmr_find_vif(mrt, dev);
    if (vif < 0) {
    read_unlock(&mrt_lock);
    rcu_read_unlock();
    return -ENODEV;
    }
    skb2 = skb_clone(skb, GFP_ATOMIC);
    if (!skb2) {
    read_unlock(&mrt_lock);
    rcu_read_unlock();
    return -ENOMEM;
    }

    NETLINK_CB(skb2).portid = portid;
    skb_push(skb2, sizeof(struct iphdr));
    skb_reset_network_header(skb2);
    iph = ip_hdr(skb2);
    iph->ihl = sizeof(struct iphdr) >> 2;
    iph->saddr = saddr;
    iph->daddr = daddr;
    iph->version = 0;
    err = ipmr_cache_unresolved(mrt, vif, skb2, dev);
    read_unlock(&mrt_lock);
    rcu_read_unlock();
    return err;
    }

    read_lock(&mrt_lock);
    err = mr_fill_mroute(mrt, skb, &cache->_c, rtm);
    read_unlock(&mrt_lock);
    rcu_read_unlock();
    return err;
    }

    static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
    u32 portid, u32 seq, struct mfc_cache *c, int cmd,
    int flags)
    {
    struct nlmsghdr *nlh;
    struct rtmsg *rtm;
    int err;

    nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
    if (!nlh)
    return -EMSGSIZE;

    rtm = nlmsg_data(nlh);
    rtm->rtm_family = RTNL_FAMILY_IPMR;
    rtm->rtm_dst_len = 32;
    rtm->rtm_src_len = 32;
    rtm->rtm_tos = 0;
    rtm->rtm_table = mrt->id;
    if (nla_put_u32(skb, RTA_TABLE, mrt->id))
    goto nla_put_failure;
    rtm->rtm_type = RTN_MULTICAST;
    rtm->rtm_scope = RT_SCOPE_UNIVERSE;
    if (c->_c.mfc_flags & MFC_STATIC)
    rtm->rtm_protocol = RTPROT_STATIC;
    else
    rtm->rtm_protocol = RTPROT_MROUTED;
    rtm->rtm_flags = 0;

    if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) ||
    nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp))
    goto nla_put_failure;
    err = mr_fill_mroute(mrt, skb, &c->_c, rtm);
    /* do not break the dump if cache is unresolved */
    if (err < 0 && err != -ENOENT)
    goto nla_put_failure;

    nlmsg_end(skb, nlh);
    return 0;

    nla_put_failure:
    nlmsg_cancel(skb, nlh);
    return -EMSGSIZE;
    }

    static int _ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
    u32 portid, u32 seq, struct mr_mfc *c, int cmd,
    int flags)
    {
    return ipmr_fill_mroute(mrt, skb, portid, seq, (struct mfc_cache *)c,
    cmd, flags);
    }

    static size_t mroute_msgsize(bool unresolved, int maxvif)
    {
    size_t len =
    NLMSG_ALIGN(sizeof(struct rtmsg))
    + nla_total_size(4)/* RTA_TABLE */
    + nla_total_size(4)/* RTA_SRC */
    + nla_total_size(4)/* RTA_DST */
    ;

    if (!unresolved)
    len = len
    + nla_total_size(4)/* RTA_IIF */
    + nla_total_size(0)/* RTA_MULTIPATH */
    + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
    /* RTA_MFC_STATS */
    + nla_total_size_64bit(sizeof(struct rta_mfc_stats))
    ;

    return len;
    }

    static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
    int cmd)
    {
    struct net *net = read_pnet(&mrt->net);
    struct sk_buff *skb;
    int err = -ENOBUFS;

    skb = nlmsg_new(mroute_msgsize(mfc->_c.mfc_parent >= MAXVIFS,
    mrt->maxvif),
    GFP_ATOMIC);
    if (!skb)
    goto errout;

    err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
    if (err < 0)
    goto errout;

    rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
    return;

    errout:
    kfree_skb(skb);
    if (err < 0)
    rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
    }

    static size_t igmpmsg_netlink_msgsize(size_t payloadlen)
    {
    size_t len =
    NLMSG_ALIGN(sizeof(struct rtgenmsg))
    + nla_total_size(1)/* IPMRA_CREPORT_MSGTYPE */
    + nla_total_size(4)/* IPMRA_CREPORT_VIF_ID */
    + nla_total_size(4)/* IPMRA_CREPORT_SRC_ADDR */
    + nla_total_size(4)/* IPMRA_CREPORT_DST_ADDR */
    /* IPMRA_CREPORT_PKT */
    + nla_total_size(payloadlen)
    ;

    return len;
    }

    static void igmpmsg_netlink_event(struct mr_table *mrt, struct sk_buff *pkt)
    {
    struct net *net = read_pnet(&mrt->net);
    struct nlmsghdr *nlh;
    struct rtgenmsg *rtgenm;
    struct igmpmsg *msg;
    struct sk_buff *skb;
    struct nlattr *nla;
    int payloadlen;

    payloadlen = pkt->len – sizeof(struct igmpmsg);
    msg = (struct igmpmsg *)skb_network_header(pkt);

    skb = nlmsg_new(igmpmsg_netlink_msgsize(payloadlen), GFP_ATOMIC);
    if (!skb)
    goto errout;

    nlh = nlmsg_put(skb, 0, 0, RTM_NEWCACHEREPORT,
    sizeof(struct rtgenmsg), 0);
    if (!nlh)
    goto errout;
    rtgenm = nlmsg_data(nlh);
    rtgenm->rtgen_family = RTNL_FAMILY_IPMR;
    if (nla_put_u8(skb, IPMRA_CREPORT_MSGTYPE, msg->im_msgtype) ||
    nla_put_u32(skb, IPMRA_CREPORT_VIF_ID, msg->im_vif) ||
    nla_put_in_addr(skb, IPMRA_CREPORT_SRC_ADDR,
    msg->im_src.s_addr) ||
    nla_put_in_addr(skb, IPMRA_CREPORT_DST_ADDR,
    msg->im_dst.s_addr))
    goto nla_put_failure;

    nla = nla_reserve(skb, IPMRA_CREPORT_PKT, payloadlen);
    if (!nla || skb_copy_bits(pkt, sizeof(struct igmpmsg),
    nla_data(nla), payloadlen))
    goto nla_put_failure;

    nlmsg_end(skb, nlh);

    rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE_R, NULL, GFP_ATOMIC);
    return;

    nla_put_failure:
    nlmsg_cancel(skb, nlh);
    errout:
    kfree_skb(skb);
    rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE_R, -ENOBUFS);
    }

    static int ipmr_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh,
    struct netlink_ext_ack *extack)
    {
    struct net *net = sock_net(in_skb->sk);
    struct nlattr *tb[RTA_MAX + 1];
    struct sk_buff *skb = NULL;
    struct mfc_cache *cache;
    struct mr_table *mrt;
    struct rtmsg *rtm;
    __be32 src, grp;
    u32 tableid;
    int err;

    err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX,
    rtm_ipv4_policy, extack);
    if (err < 0)
    goto errout;

    rtm = nlmsg_data(nlh);

    src = tb[RTA_SRC] ? nla_get_in_addr(tb[RTA_SRC]) : 0;
    grp = tb[RTA_DST] ? nla_get_in_addr(tb[RTA_DST]) : 0;
    tableid = tb[RTA_TABLE] ? nla_get_u32(tb[RTA_TABLE]) : 0;

    mrt = ipmr_get_table(net, tableid ? tableid : RT_TABLE_DEFAULT);
    if (!mrt) {
    err = -ENOENT;
    goto errout_free;
    }

    /* entries are added/deleted only under RTNL */
    rcu_read_lock();
    cache = ipmr_cache_find(mrt, src, grp);
    rcu_read_unlock();
    if (!cache) {
    err = -ENOENT;
    goto errout_free;
    }

    skb = nlmsg_new(mroute_msgsize(false, mrt->maxvif), GFP_KERNEL);
    if (!skb) {
    err = -ENOBUFS;
    goto errout_free;
    }

    err = ipmr_fill_mroute(mrt, skb, NETLINK_CB(in_skb).portid,
    nlh->nlmsg_seq, cache,
    RTM_NEWROUTE, 0);
    if (err < 0)
    goto errout_free;

    err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid);

    errout:
    return err;

    errout_free:
    kfree_skb(skb);
    goto errout;
    }

    static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
    {
    return mr_rtm_dumproute(skb, cb, ipmr_mr_table_iter,
    _ipmr_fill_mroute, &mfc_unres_lock);
    }

    static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = {
    [RTA_SRC]= { .type = NLA_U32 },
    [RTA_DST]= { .type = NLA_U32 },
    [RTA_IIF]= { .type = NLA_U32 },
    [RTA_TABLE]= { .type = NLA_U32 },
    [RTA_MULTIPATH]= { .len = sizeof(struct rtnexthop) },
    };

    static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol)
    {
    switch (rtm_protocol) {
    case RTPROT_STATIC:
    case RTPROT_MROUTED:
    return true;
    }
    return false;
    }

    static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc)
    {
    struct rtnexthop *rtnh = nla_data(nla);
    int remaining = nla_len(nla), vifi = 0;

    while (rtnh_ok(rtnh, remaining)) {
    mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops;
    if (++vifi == MAXVIFS)
    break;
    rtnh = rtnh_next(rtnh, &remaining);
    }

    return remaining > 0 ? -EINVAL : vifi;
    }

    /* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */
    static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh,
    struct mfcctl *mfcc, int *mrtsock,
    struct mr_table **mrtret,
    struct netlink_ext_ack *extack)
    {
    struct net_device *dev = NULL;
    u32 tblid = RT_TABLE_DEFAULT;
    struct mr_table *mrt;
    struct nlattr *attr;
    struct rtmsg *rtm;
    int ret, rem;

    ret = nlmsg_validate(nlh, sizeof(*rtm), RTA_MAX, rtm_ipmr_policy,
    extack);
    if (ret < 0)
    goto out;
    rtm = nlmsg_data(nlh);

    ret = -EINVAL;
    if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 ||
    rtm->rtm_type != RTN_MULTICAST ||
    rtm->rtm_scope != RT_SCOPE_UNIVERSE ||
    !ipmr_rtm_validate_proto(rtm->rtm_protocol))
    goto out;

    memset(mfcc, 0, sizeof(*mfcc));
    mfcc->mfcc_parent = -1;
    ret = 0;
    nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) {
    switch (nla_type(attr)) {
    case RTA_SRC:
    mfcc->mfcc_origin.s_addr = nla_get_be32(attr);
    break;
    case RTA_DST:
    mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(attr);
    break;
    case RTA_IIF:
    dev = __dev_get_by_index(net, nla_get_u32(attr));
    if (!dev) {
    ret = -ENODEV;
    goto out;
    }
    break;
    case RTA_MULTIPATH:
    if (ipmr_nla_get_ttls(attr, mfcc) < 0) {
    ret = -EINVAL;
    goto out;
    }
    break;
    case RTA_PREFSRC:
    ret = 1;
    break;
    case RTA_TABLE:
    tblid = nla_get_u32(attr);
    break;
    }
    }
    mrt = ipmr_get_table(net, tblid);
    if (!mrt) {
    ret = -ENOENT;
    goto out;
    }
    *mrtret = mrt;
    *mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0;
    if (dev)
    mfcc->mfcc_parent = ipmr_find_vif(mrt, dev);

    out:
    return ret;
    }

    /* takes care of both newroute and delroute */
    static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh,
    struct netlink_ext_ack *extack)
    {
    struct net *net = sock_net(skb->sk);
    int ret, mrtsock, parent;
    struct mr_table *tbl;
    struct mfcctl mfcc;

    mrtsock = 0;
    tbl = NULL;
    ret = rtm_to_ipmr_mfcc(net, nlh, &mfcc, &mrtsock, &tbl, extack);
    if (ret < 0)
    return ret;

    parent = ret ? mfcc.mfcc_parent : -1;
    if (nlh->nlmsg_type == RTM_NEWROUTE)
    return ipmr_mfc_add(net, tbl, &mfcc, mrtsock, parent);
    else
    return ipmr_mfc_delete(tbl, &mfcc, parent);
    }

    static bool ipmr_fill_table(struct mr_table *mrt, struct sk_buff *skb)
    {
    u32 queue_len = atomic_read(&mrt->cache_resolve_queue_len);

    if (nla_put_u32(skb, IPMRA_TABLE_ID, mrt->id) ||
    nla_put_u32(skb, IPMRA_TABLE_CACHE_RES_QUEUE_LEN, queue_len) ||
    nla_put_s32(skb, IPMRA_TABLE_MROUTE_REG_VIF_NUM,
    mrt->mroute_reg_vif_num) ||
    nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_ASSERT,
    mrt->mroute_do_assert) ||
    nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_PIM, mrt->mroute_do_pim) ||
    nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_WRVIFWHOLE,
    mrt->mroute_do_wrvifwhole))
    return false;

    return true;
    }

    static bool ipmr_fill_vif(struct mr_table *mrt, u32 vifid, struct sk_buff *skb)
    {
    struct nlattr *vif_nest;
    struct vif_device *vif;

    /* if the VIF doesn't exist just continue */
    if (!VIF_EXISTS(mrt, vifid))
    return true;

    vif = &mrt->vif_table[vifid];
    vif_nest = nla_nest_start(skb, IPMRA_VIF);
    if (!vif_nest)
    return false;
    if (nla_put_u32(skb, IPMRA_VIFA_IFINDEX, vif->dev->ifindex) ||
    nla_put_u32(skb, IPMRA_VIFA_VIF_ID, vifid) ||
    nla_put_u16(skb, IPMRA_VIFA_FLAGS, vif->flags) ||
    nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_IN, vif->bytes_in,
    IPMRA_VIFA_PAD) ||
    nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_OUT, vif->bytes_out,
    IPMRA_VIFA_PAD) ||
    nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_IN, vif->pkt_in,
    IPMRA_VIFA_PAD) ||
    nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_OUT, vif->pkt_out,
    IPMRA_VIFA_PAD) ||
    nla_put_be32(skb, IPMRA_VIFA_LOCAL_ADDR, vif->local) ||
    nla_put_be32(skb, IPMRA_VIFA_REMOTE_ADDR, vif->remote)) {
    nla_nest_cancel(skb, vif_nest);
    return false;
    }
    nla_nest_end(skb, vif_nest);

    return true;
    }

    static int ipmr_rtm_dumplink(struct sk_buff *skb, struct netlink_callback *cb)
    {
    struct net *net = sock_net(skb->sk);
    struct nlmsghdr *nlh = NULL;
    unsigned int t = 0, s_t;
    unsigned int e = 0, s_e;
    struct mr_table *mrt;

    s_t = cb->args[0];
    s_e = cb->args[1];

    ipmr_for_each_table(mrt, net) {
    struct nlattr *vifs, *af;
    struct ifinfomsg *hdr;
    u32 i;

    if (t < s_t)
    goto skip_table;
    nlh = nlmsg_put(skb, NETLINK_CB(cb->skb).portid,
    cb->nlh->nlmsg_seq, RTM_NEWLINK,
    sizeof(*hdr), NLM_F_MULTI);
    if (!nlh)
    break;

    hdr = nlmsg_data(nlh);
    memset(hdr, 0, sizeof(*hdr));
    hdr->ifi_family = RTNL_FAMILY_IPMR;

    af = nla_nest_start(skb, IFLA_AF_SPEC);
    if (!af) {
    nlmsg_cancel(skb, nlh);
    goto out;
    }

    if (!ipmr_fill_table(mrt, skb)) {
    nlmsg_cancel(skb, nlh);
    goto out;
    }

    vifs = nla_nest_start(skb, IPMRA_TABLE_VIFS);
    if (!vifs) {
    nla_nest_end(skb, af);
    nlmsg_end(skb, nlh);
    goto out;
    }
    for (i = 0; i < mrt->maxvif; i++) {
    if (e < s_e)
    goto skip_entry;
    if (!ipmr_fill_vif(mrt, i, skb)) {
    nla_nest_end(skb, vifs);
    nla_nest_end(skb, af);
    nlmsg_end(skb, nlh);
    goto out;
    }
    skip_entry:
    e++;
    }
    s_e = 0;
    e = 0;
    nla_nest_end(skb, vifs);
    nla_nest_end(skb, af);
    nlmsg_end(skb, nlh);
    skip_table:
    t++;
    }

    out:
    cb->args[1] = e;
    cb->args[0] = t;

    return skb->len;
    }

    #ifdef CONFIG_PROC_FS
    /* The /proc interfaces to multicast routing :
    * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
    */

    static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
    __acquires(mrt_lock)
    {
    struct mr_vif_iter *iter = seq->private;
    struct net *net = seq_file_net(seq);
    struct mr_table *mrt;

    mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
    if (!mrt)
    return ERR_PTR(-ENOENT);

    iter->mrt = mrt;

    read_lock(&mrt_lock);
    return mr_vif_seq_start(seq, pos);
    }

    static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
    __releases(mrt_lock)
    {
    read_unlock(&mrt_lock);
    }

    static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
    {
    struct mr_vif_iter *iter = seq->private;
    struct mr_table *mrt = iter->mrt;

    if (v == SEQ_START_TOKEN) {
    seq_puts(seq,
    "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\\n");
    } else {
    const struct vif_device *vif = v;
    const char *name = vif->dev ?
    vif->dev->name : "none";

    seq_printf(seq,
    "%2td %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\\n",
    vif – mrt->vif_table,
    name, vif->bytes_in, vif->pkt_in,
    vif->bytes_out, vif->pkt_out,
    vif->flags, vif->local, vif->remote);
    }
    return 0;
    }

    static const struct seq_operations ipmr_vif_seq_ops = {
    .start = ipmr_vif_seq_start,
    .next = mr_vif_seq_next,
    .stop = ipmr_vif_seq_stop,
    .show = ipmr_vif_seq_show,
    };

    static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
    {
    struct net *net = seq_file_net(seq);
    struct mr_table *mrt;

    mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
    if (!mrt)
    return ERR_PTR(-ENOENT);

    return mr_mfc_seq_start(seq, pos, mrt, &mfc_unres_lock);
    }

    static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
    {
    int n;

    if (v == SEQ_START_TOKEN) {
    seq_puts(seq,
    "Group Origin Iif Pkts Bytes Wrong Oifs\\n");
    } else {
    const struct mfc_cache *mfc = v;
    const struct mr_mfc_iter *it = seq->private;
    const struct mr_table *mrt = it->mrt;

    seq_printf(seq, "%08X %08X %-3hd",
    (__force u32) mfc->mfc_mcastgrp,
    (__force u32) mfc->mfc_origin,
    mfc->_c.mfc_parent);

    if (it->cache != &mrt->mfc_unres_queue) {
    seq_printf(seq, " %8lu %8lu %8lu",
    mfc->_c.mfc_un.res.pkt,
    mfc->_c.mfc_un.res.bytes,
    mfc->_c.mfc_un.res.wrong_if);
    for (n = mfc->_c.mfc_un.res.minvif;
    n < mfc->_c.mfc_un.res.maxvif; n++) {
    if (VIF_EXISTS(mrt, n) &&
    mfc->_c.mfc_un.res.ttls[n] < 255)
    seq_printf(seq,
    " %2d:%-3d",
    n, mfc->_c.mfc_un.res.ttls[n]);
    }
    } else {
    /* unresolved mfc_caches don't contain
    * pkt, bytes and wrong_if values
    */
    seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
    }
    seq_putc(seq, '\\n');
    }
    return 0;
    }

    static const struct seq_operations ipmr_mfc_seq_ops = {
    .start = ipmr_mfc_seq_start,
    .next = mr_mfc_seq_next,
    .stop = mr_mfc_seq_stop,
    .show = ipmr_mfc_seq_show,
    };
    #endif

    #ifdef CONFIG_IP_PIMSM_V2
    static const struct net_protocol pim_protocol = {
    .handler=pim_rcv,
    .netns_ok=1,
    };
    #endif

    static unsigned int ipmr_seq_read(struct net *net)
    {
    ASSERT_RTNL();

    return net->ipv4.ipmr_seq + ipmr_rules_seq_read(net);
    }

    static int ipmr_dump(struct net *net, struct notifier_block *nb)
    {
    return mr_dump(net, nb, RTNL_FAMILY_IPMR, ipmr_rules_dump,
    ipmr_mr_table_iter, &mrt_lock);
    }

    static const struct fib_notifier_ops ipmr_notifier_ops_template = {
    .family= RTNL_FAMILY_IPMR,
    .fib_seq_read= ipmr_seq_read,
    .fib_dump= ipmr_dump,
    .owner= THIS_MODULE,
    };

    static int __net_init ipmr_notifier_init(struct net *net)
    {
    struct fib_notifier_ops *ops;

    net->ipv4.ipmr_seq = 0;

    ops = fib_notifier_ops_register(&ipmr_notifier_ops_template, net);
    if (IS_ERR(ops))
    return PTR_ERR(ops);
    net->ipv4.ipmr_notifier_ops = ops;

    return 0;
    }

    static void __net_exit ipmr_notifier_exit(struct net *net)
    {
    fib_notifier_ops_unregister(net->ipv4.ipmr_notifier_ops);
    net->ipv4.ipmr_notifier_ops = NULL;
    }

    /* Setup for IP multicast routing */
    static int __net_init ipmr_net_init(struct net *net)
    {
    int err;

    err = ipmr_notifier_init(net);
    if (err)
    goto ipmr_notifier_fail;

    err = ipmr_rules_init(net);
    if (err < 0)
    goto ipmr_rules_fail;

    #ifdef CONFIG_PROC_FS
    err = -ENOMEM;
    if (!proc_create_net("ip_mr_vif", 0, net->proc_net, &ipmr_vif_seq_ops,
    sizeof(struct mr_vif_iter)))
    goto proc_vif_fail;
    if (!proc_create_net("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_seq_ops,
    sizeof(struct mr_mfc_iter)))
    goto proc_cache_fail;
    #endif
    return 0;

    #ifdef CONFIG_PROC_FS
    proc_cache_fail:
    remove_proc_entry("ip_mr_vif", net->proc_net);
    proc_vif_fail:
    ipmr_rules_exit(net);
    #endif
    ipmr_rules_fail:
    ipmr_notifier_exit(net);
    ipmr_notifier_fail:
    return err;
    }

    static void __net_exit ipmr_net_exit(struct net *net)
    {
    #ifdef CONFIG_PROC_FS
    remove_proc_entry("ip_mr_cache", net->proc_net);
    remove_proc_entry("ip_mr_vif", net->proc_net);
    #endif
    ipmr_notifier_exit(net);
    ipmr_rules_exit(net);
    }

    static struct pernet_operations ipmr_net_ops = {
    .init = ipmr_net_init,
    .exit = ipmr_net_exit,
    };

    int __init ip_mr_init(void)
    {
    int err;

    mrt_cachep = kmem_cache_create("ip_mrt_cache",
    sizeof(struct mfc_cache),
    0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
    NULL);

    err = register_pernet_subsys(&ipmr_net_ops);
    if (err)
    goto reg_pernet_fail;

    err = register_netdevice_notifier(&ip_mr_notifier);
    if (err)
    goto reg_notif_fail;
    #ifdef CONFIG_IP_PIMSM_V2
    if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
    pr_err("%s: can't add PIM protocol\\n", __func__);
    err = -EAGAIN;
    goto add_proto_fail;
    }
    #endif
    rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
    ipmr_rtm_getroute, ipmr_rtm_dumproute, 0);
    rtnl_register(RTNL_FAMILY_IPMR, RTM_NEWROUTE,
    ipmr_rtm_route, NULL, 0);
    rtnl_register(RTNL_FAMILY_IPMR, RTM_DELROUTE,
    ipmr_rtm_route, NULL, 0);

    rtnl_register(RTNL_FAMILY_IPMR, RTM_GETLINK,
    NULL, ipmr_rtm_dumplink, 0);
    return 0;

    #ifdef CONFIG_IP_PIMSM_V2
    add_proto_fail:
    unregister_netdevice_notifier(&ip_mr_notifier);
    #endif
    reg_notif_fail:
    unregister_pernet_subsys(&ipmr_net_ops);
    reg_pernet_fail:
    kmem_cache_destroy(mrt_cachep);
    return err;
    }

    net/ipv4/ipmr.c 是 Linux 内核中实现 IPv4 多播路由的核心文件,主要支持 mrouted 和 PIM(Protocol Independent Multicast)协议。以下是对其关键部分的详细分析:


    1. 核心数据结构

    a) 多播路由表 (struct mr_table)

    管理多播路由信息,包含:

    • 虚拟接口表 (vif_table): 存储所有虚拟接口(VIF)信息。

    • 多播转发缓存 (MFC): 使用哈希表 (mfc_hash) 存储已解析的路由条目。

    • 未解析队列 (mfc_unres_queue): 临时存放待处理的多播包。

    • 定时器 (ipmr_expire_timer): 清理超时未解析的条目。

    b) 虚拟接口 (struct vif_device)

    表示一个多播虚拟接口:

    • 设备指针 (dev): 关联的网络设备。

    • 本地/远程地址 (local, remote): 隧道端点地址。

    • 统计信息: 收发包数、字节数等。

    • 标志位 (flags):
      VIFF_TUNNEL(隧道接口)、VIFF_REGISTER(注册到用户态)、VIFF_STATIC(静态配置)。

    c) 多播转发缓存 (struct mfc_cache)

    存储多播路由条目:

    • 源地址/组地址 (mfc_origin, mfc_mcastgrp): 标识流。

    • 输入接口 (mfc_parent): 接收流量的 VIF。

    • 输出接口 TTL 映射 (res.ttls): 每个 VIF 的 TTL 阈值。

    • 统计信息: 转发包数、字节数、错误计数。


    2. 核心功能实现

    a) 虚拟接口管理
    • 创建 (vif_add)
      支持三种类型接口:

      • VIFF_REGISTER: 注册到用户态守护进程(如 pimd)。

      • VIFF_TUNNEL: 创建 IP-in-IP 隧道(如 DVMRP)。

      • 物理接口: 绑定到实际网络设备。

    • 删除 (vif_delete)
      解除设备绑定,更新统计,清理关联资源。

    b) MFC 条目管理
    • 动态学习 (ipmr_cache_find)
      通过哈希表快速查找 MFC 条目。

    • 静态配置 (ipmr_mfc_add)
      通过 Netlink 或 Socket 添加静态路由。

    • 超时处理 (ipmr_expire_process)
      清理未解析的 MFC 条目(默认 10 秒超时)。

    c) 数据包转发 (ip_mr_forward)

    处理流程:

  • 查找 MFC: 匹配源地址和组地址。

  • 验证输入接口: 检查包是否从正确 VIF 进入。

  • TTL 检查: 跳过 TTL 不足的出口。

  • 克隆包多播转发:

    • 隧道接口:封装 IP-in-IP 头。

    • 物理接口:直接发送。

    • 注册接口:提交给用户态守护进程。

  • d) 未解析包处理 (ipmr_cache_unresolved)

    当 MFC 不存在时:

  • 创建临时 MFC 条目并加入未解析队列。

  • 发送 IGMPMSG_NOCACHE 通知用户态。

  • 收到响应后解析条目并转发缓存的包。


  • 3. 关键协议支持

    a) PIM 协议处理
    • PIMv1 (pim_rcv_v1)
      处理 PIM 注册消息,封装包转发到 RP。

    • PIMv2 (pim_rcv)
      校验消息有效性,转发到注册接口。

    b) IGMP 消息
    • 缓存报告 (ipmr_cache_report)
      发送 IGMPMSG_WHOLEPKT 通知用户态新流量。


    4. 控制平面接口

    a) Netlink 操作
    • 路由操作 (ipmr_rtm_route)
      处理 RTM_NEWROUTE/RTM_DELROUTE 添加/删除 MFC。

    • 信息查询 (ipmr_rtm_dumplink)
      通过 RTM_GETLINK 返回 VIF 和 MFC 表信息。

    b) Sysctl / Procfs
    • /proc/net/ip_mr_vif
      显示所有 VIF 的统计信息。

    • /proc/net/ip_mr_cache
      列出 MFC 条目,包括源组地址、转发计数。

    c) Socket IOCTL
    • SIOCGETVIFCNT
      获取指定 VIF 的流量统计。

    • SIOCGETSGCNT
      查询特定多播流的转发统计。


    5. 初始化和清理

    • 初始化 (ip_mr_init)

    • 注册网络子系统 (register_pernet_subsys)。

    • 创建 MFC 缓存内存池 (kmem_cache_create)。

    • 注册 Netlink 操作和 PIM 协议处理器。

    • 挂载 Procfs 文件。

    • 退出清理
      释放所有路由表、定时器、Procfs 项。


    6. 设计亮点

    • 多表支持 (CONFIG_IP_MROUTE_MULTIPLE_TABLES)
      允许创建多个独立的多播路由表。

    • 高效查找
      使用 RCU 保护的哈希表管理 MFC。

    • 用户态协作
      通过原始套接字 (mroute_sk) 与 mrouted/pimd 交互。

    • 模块化结构
      分离转发/控制逻辑,支持动态扩展。


    总结

    ipmr.c 实现了完整的 IPv4 多播路由框架,核心功能包括:

  • 虚拟接口管理:支持物理接口、隧道和注册接口。

  • 转发引擎:基于 MFC 条目高效克隆转发包。

  • 协议支持:与 PIM/DVMRP 守护进程协同工作。

  • 控制接口:提供 Netlink、IOCTL、Procfs 等管理方式。
    其设计平衡了性能和灵活性,是 Linux 多播路由的基石。

  • 赞(0)
    未经允许不得转载:网硕互联帮助中心 » Linux内核IPv4多播路由深度解析:从数据结构到高效转发
    分享到: 更多 (0)

    评论 抢沙发

    评论前必须登录!