一. 概率
简单地说,机器学习就是做出预测。在强化学习中,我们希望智能体(agent)能在一个环境中智能地行动。 这意味着我们需要考虑在每种可行的行为下获得高奖励的概率。 当我们建立推荐系统时,我们也需要考虑概率。
首先,我们导入必要的软件包。
%matplotlib inline
import torch
from torch.distributions import multinomial
from d2l import torch as d2l
在统计学中,我们把从概率分布中抽取样本的过程称为抽样(sampling)。 笼统来说,可以把分布(distribution)看作对事件的概率分配, 稍后我们将给出的更正式定义。 将概率分配给一些离散选择的分布称为多项分布(multinomial distribution)。
fair_probs = torch.ones([6]) / 6
multinomial.Multinomial(1, fair_probs).sample()
在估计一个骰子的公平性时,我们希望从同一分布中生成多个样本。 如果用Python的for循环来完成这个任务,速度会慢得惊人。 因此我们使用深度学习框架的函数同时抽取多个样本,得到我们想要的任意形状的独立样本数组。
multinomial.Multinomial(10, fair_probs).sample()
现在我们知道如何对骰子进行采样,我们可以模拟1000次投掷。 然后,我们可以统计1000次投掷后,每个数字被投中了多少次。 具体来说,我们计算相对频率,以作为真实概率的估计。
# 将结果存储为32位浮点数以进行除法
counts = multinomial.Multinomial(1000, fair_probs).sample()
counts / 1000 # 相对频率作为估计值
我们也可以看到这些概率如何随着时间的推移收敛到真实概率。 让我们进行500组实验,每组抽取10个样本。
counts = multinomial.Multinomial(10, fair_probs).sample((500,))
cum_counts = counts.cumsum(dim=0)
estimates = cum_counts / cum_counts.sum(dim=1, keepdims=True)
d2l.set_figsize((6, 4.5))
for i in range(6):
d2l.plt.plot(estimates[:, i].numpy(),
label=("P(die=" + str(i + 1) + ")"))
d2l.plt.axhline(y=0.167, color='black', linestyle='dashed')
d2l.plt.gca().set_xlabel('Groups of experiments')
d2l.plt.gca().set_ylabel('Estimated probability')
d2l.plt.legend();
二.查阅文档
1. 查找模块中的所有函数和类
为了知道模块中可以调用哪些函数和类,可以调用dir函数。 例如,我们可以查询随机数生成模块中的所有属性:
import torch
print(dir(torch.distributions))
['AbsTransform', 'AffineTransform', 'Bernoulli', 'Beta', 'Binomial', 'CatTransform', 'Categorical', 'Cauchy', 'Chi2', 'ComposeTransform', 'ContinuousBernoulli', 'CorrCholeskyTransform', 'CumulativeDistributionTransform', 'Dirichlet', 'Distribution', 'ExpTransform', 'Exponential', 'ExponentialFamily', 'FisherSnedecor', 'Gamma', 'Geometric', 'Gumbel', 'HalfCauchy', 'HalfNormal', 'Independent', 'IndependentTransform', 'Kumaraswamy', 'LKJCholesky', 'Laplace', 'LogNormal', 'LogisticNormal', 'LowRankMultivariateNormal', 'LowerCholeskyTransform', 'MixtureSameFamily', 'Multinomial', 'MultivariateNormal', 'NegativeBinomial', 'Normal', 'OneHotCategorical', 'OneHotCategoricalStraightThrough', 'Pareto', 'Poisson', 'PowerTransform', 'RelaxedBernoulli', 'RelaxedOneHotCategorical', 'ReshapeTransform', 'SigmoidTransform', 'SoftmaxTransform', 'SoftplusTransform', 'StackTransform', 'StickBreakingTransform', 'StudentT', 'TanhTransform', 'Transform', 'TransformedDistribution', 'Uniform', 'VonMises', 'Weibull', 'Wishart', '__all__', '__builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__name__', '__package__', '__path__', '__spec__', 'bernoulli', 'beta', 'biject_to', 'binomial', 'categorical', 'cauchy', 'chi2', 'constraint_registry', 'constraints', 'continuous_bernoulli', 'dirichlet', 'distribution', 'exp_family', 'exponential', 'fishersnedecor', 'gamma', 'geometric', 'gumbel', 'half_cauchy', 'half_normal', 'identity_transform', 'independent', 'kl', 'kl_divergence', 'kumaraswamy', 'laplace', 'lkj_cholesky', 'log_normal', 'logistic_normal', 'lowrank_multivariate_normal', 'mixture_same_family', 'multinomial', 'multivariate_normal', 'negative_binomial', 'normal', 'one_hot_categorical', 'pareto', 'poisson', 'register_kl', 'relaxed_bernoulli', 'relaxed_categorical', 'studentT', 'transform_to', 'transformed_distribution', 'transforms', 'uniform', 'utils', 'von_mises', 'weibull', 'wishart']
通常可以忽略以“__”(双下划线)开始和结束的函数,它们是Python中的特殊对象, 或以单个“_”(单下划线)开始的函数,它们通常是内部函数。 根据剩余的函数名或属性名,我们可能会猜测这个模块提供了各种生成随机数的方法, 包括从均匀分布(uniform)、正态分布(normal)和多项分布(multinomial)中采样。
2.7.2. 查找特定函数和类的用法
有关如何使用给定函数或类的更具体说明,可以调用help函数。 例如,我们来查看张量ones函数的用法。
help(torch.ones)
从文档中,我们可以看到ones函数创建一个具有指定形状的新张量,并将所有元素值设置为1。 下面来运行一个快速测试来确认这一解释:
torch.ones(4)
在Jupyter记事本中,我们可以使用?指令在另一个浏览器窗口中显示文档。 例如,list?指令将创建与help(list)指令几乎相同的内容,并在新的浏览器窗口中显示它。 此外,如果我们使用两个问号,如list??,将显示实现该函数的Python代码。
评论前必须登录!
注册