目录
1.题目
2.代码
1.题目
给定一个 m x n 的矩阵,如果一个元素为 0 ,则将其所在行和列的所有元素都设为 0 。请使用 原地 算法。
示例 1:
输入:matrix = [[1,1,1],[1,0,1],[1,1,1]]
输出:[[1,0,1],[0,0,0],[1,0,1]]
示例 2:
输入:matrix = [[0,1,2,0],[3,4,5,2],[1,3,1,5]]
输出:[[0,0,0,0],[0,4,5,0],[0,3,1,0]]
提示:
- m == matrix.length
- n == matrix[0].length
- 1 <= m, n <= 200
- -231 <= matrix[i][j] <= 231 – 1
进阶:
- 一个直观的解决方案是使用 O(mn) 的额外空间,但这并不是一个好的解决方案。
- 一个简单的改进方案是使用 O(m + n) 的额外空间,但这仍然不是最好的解决方案。
- 你能想出一个仅使用常量空间的解决方案吗?
2.代码
class Solution {
public:
void setZeroes(vector<vector<int>>& matrix) {
int m = matrix.size();
int n = matrix[0].size();
std::vector<bool> rows(m, false);
std::vector<bool> cols(n, false);
// 记录哪些行和列中存在值为 0 的元素
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (matrix[i][j] == 0) {
rows[i] = true;
cols[j] = true;
}
}
}
// 根据记录的信息将相应的行和列置为 0
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (rows[i] || cols[j]) {
matrix[i][j] = 0;
}
}
}
}
};
评论前必须登录!
注册